| L(s) = 1 | + (−0.111 + 0.993i)5-s + (−0.974 + 0.222i)7-s + (−0.330 − 0.943i)11-s + (0.943 − 0.330i)13-s + 17-s + (0.532 + 0.846i)19-s + (−0.781 − 0.623i)23-s + (−0.974 − 0.222i)25-s + (−0.623 − 0.781i)31-s + (−0.111 − 0.993i)35-s + (0.943 + 0.330i)37-s − i·41-s + (−0.993 + 0.111i)43-s + (0.900 + 0.433i)47-s + (0.900 − 0.433i)49-s + ⋯ |
| L(s) = 1 | + (−0.111 + 0.993i)5-s + (−0.974 + 0.222i)7-s + (−0.330 − 0.943i)11-s + (0.943 − 0.330i)13-s + 17-s + (0.532 + 0.846i)19-s + (−0.781 − 0.623i)23-s + (−0.974 − 0.222i)25-s + (−0.623 − 0.781i)31-s + (−0.111 − 0.993i)35-s + (0.943 + 0.330i)37-s − i·41-s + (−0.993 + 0.111i)43-s + (0.900 + 0.433i)47-s + (0.900 − 0.433i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2784 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2784 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.880 - 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.183911641 - 0.2982088692i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.183911641 - 0.2982088692i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9403653223 + 0.05185577396i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9403653223 + 0.05185577396i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 29 | \( 1 \) |
| good | 5 | \( 1 + (-0.111 + 0.993i)T \) |
| 7 | \( 1 + (-0.974 + 0.222i)T \) |
| 11 | \( 1 + (-0.330 - 0.943i)T \) |
| 13 | \( 1 + (0.943 - 0.330i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (0.532 + 0.846i)T \) |
| 23 | \( 1 + (-0.781 - 0.623i)T \) |
| 31 | \( 1 + (-0.623 - 0.781i)T \) |
| 37 | \( 1 + (0.943 + 0.330i)T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + (-0.993 + 0.111i)T \) |
| 47 | \( 1 + (0.900 + 0.433i)T \) |
| 53 | \( 1 + (0.111 - 0.993i)T \) |
| 59 | \( 1 + (-0.707 - 0.707i)T \) |
| 61 | \( 1 + (-0.846 - 0.532i)T \) |
| 67 | \( 1 + (0.330 - 0.943i)T \) |
| 71 | \( 1 + (0.433 - 0.900i)T \) |
| 73 | \( 1 + (-0.781 - 0.623i)T \) |
| 79 | \( 1 + (-0.900 + 0.433i)T \) |
| 83 | \( 1 + (-0.532 - 0.846i)T \) |
| 89 | \( 1 + (0.781 - 0.623i)T \) |
| 97 | \( 1 + (-0.222 + 0.974i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.40411935546024460021026682219, −18.54827549873987282133128950646, −17.89492216159980354910958735531, −17.027603623958283663192899399150, −16.43629843447801574311351383888, −15.78960981497080167503776889998, −15.36427792192651148518721782600, −14.143385668760159568750524765664, −13.507166851547590595130227436718, −12.88436016169253780415948174288, −12.24820543460317847819326823523, −11.62739348128258077463364962691, −10.54544014128815155946543416863, −9.83864117392265976545659052748, −9.22773695217620495794842232071, −8.565841395752387467756747166375, −7.53638540428912594369695922251, −7.06195144677974311130609919200, −5.90470403764617643533521715411, −5.41190102441872317666912170907, −4.36451064749211807038574896712, −3.77137607305990054614826420763, −2.84234035389838583492986302564, −1.69702982767641029303504909885, −0.87032734787501222266407733227,
0.4820918624034503825262479879, 1.77478108083163219368287512159, 3.00645852920772662279149352841, 3.26034040188768971563629216131, 4.05524858116387192531237982479, 5.481355998422627404668803463787, 6.11524462152686592629862313715, 6.47867245664320957141145720015, 7.76351313686689484304856872371, 8.03714034095531878314121873395, 9.18320577950899511243054245525, 9.97487356729483139912983473104, 10.48672432195967227960740513229, 11.29018771166587142214058382946, 11.96826179402944956344151234962, 12.85715718414632680845488939941, 13.54435778766726323722482577734, 14.21049486829393969936888447556, 14.91979426491816068744918424529, 15.75135103771882703954729523446, 16.29561308834640938327607744864, 16.84395185367428166363657338895, 18.13857813570210489535575517299, 18.6203882972277318368649383494, 18.81514972483279382054647651887