| L(s) = 1 | + (−0.111 − 0.993i)5-s + (−0.974 − 0.222i)7-s + (−0.330 + 0.943i)11-s + (0.943 + 0.330i)13-s + 17-s + (0.532 − 0.846i)19-s + (−0.781 + 0.623i)23-s + (−0.974 + 0.222i)25-s + (−0.623 + 0.781i)31-s + (−0.111 + 0.993i)35-s + (0.943 − 0.330i)37-s − i·41-s + (−0.993 − 0.111i)43-s + (0.900 − 0.433i)47-s + (0.900 + 0.433i)49-s + ⋯ |
| L(s) = 1 | + (−0.111 − 0.993i)5-s + (−0.974 − 0.222i)7-s + (−0.330 + 0.943i)11-s + (0.943 + 0.330i)13-s + 17-s + (0.532 − 0.846i)19-s + (−0.781 + 0.623i)23-s + (−0.974 + 0.222i)25-s + (−0.623 + 0.781i)31-s + (−0.111 + 0.993i)35-s + (0.943 − 0.330i)37-s − i·41-s + (−0.993 − 0.111i)43-s + (0.900 − 0.433i)47-s + (0.900 + 0.433i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2784 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.880 + 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2784 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.880 + 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.183911641 + 0.2982088692i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.183911641 + 0.2982088692i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9403653223 - 0.05185577396i\) |
| \(L(1)\) |
\(\approx\) |
\(0.9403653223 - 0.05185577396i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 29 | \( 1 \) |
| good | 5 | \( 1 + (-0.111 - 0.993i)T \) |
| 7 | \( 1 + (-0.974 - 0.222i)T \) |
| 11 | \( 1 + (-0.330 + 0.943i)T \) |
| 13 | \( 1 + (0.943 + 0.330i)T \) |
| 17 | \( 1 + T \) |
| 19 | \( 1 + (0.532 - 0.846i)T \) |
| 23 | \( 1 + (-0.781 + 0.623i)T \) |
| 31 | \( 1 + (-0.623 + 0.781i)T \) |
| 37 | \( 1 + (0.943 - 0.330i)T \) |
| 41 | \( 1 - iT \) |
| 43 | \( 1 + (-0.993 - 0.111i)T \) |
| 47 | \( 1 + (0.900 - 0.433i)T \) |
| 53 | \( 1 + (0.111 + 0.993i)T \) |
| 59 | \( 1 + (-0.707 + 0.707i)T \) |
| 61 | \( 1 + (-0.846 + 0.532i)T \) |
| 67 | \( 1 + (0.330 + 0.943i)T \) |
| 71 | \( 1 + (0.433 + 0.900i)T \) |
| 73 | \( 1 + (-0.781 + 0.623i)T \) |
| 79 | \( 1 + (-0.900 - 0.433i)T \) |
| 83 | \( 1 + (-0.532 + 0.846i)T \) |
| 89 | \( 1 + (0.781 + 0.623i)T \) |
| 97 | \( 1 + (-0.222 - 0.974i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.81514972483279382054647651887, −18.6203882972277318368649383494, −18.13857813570210489535575517299, −16.84395185367428166363657338895, −16.29561308834640938327607744864, −15.75135103771882703954729523446, −14.91979426491816068744918424529, −14.21049486829393969936888447556, −13.54435778766726323722482577734, −12.85715718414632680845488939941, −11.96826179402944956344151234962, −11.29018771166587142214058382946, −10.48672432195967227960740513229, −9.97487356729483139912983473104, −9.18320577950899511243054245525, −8.03714034095531878314121873395, −7.76351313686689484304856872371, −6.47867245664320957141145720015, −6.11524462152686592629862313715, −5.481355998422627404668803463787, −4.05524858116387192531237982479, −3.26034040188768971563629216131, −3.00645852920772662279149352841, −1.77478108083163219368287512159, −0.4820918624034503825262479879,
0.87032734787501222266407733227, 1.69702982767641029303504909885, 2.84234035389838583492986302564, 3.77137607305990054614826420763, 4.36451064749211807038574896712, 5.41190102441872317666912170907, 5.90470403764617643533521715411, 7.06195144677974311130609919200, 7.53638540428912594369695922251, 8.565841395752387467756747166375, 9.22773695217620495794842232071, 9.83864117392265976545659052748, 10.54544014128815155946543416863, 11.62739348128258077463364962691, 12.24820543460317847819326823523, 12.88436016169253780415948174288, 13.507166851547590595130227436718, 14.143385668760159568750524765664, 15.36427792192651148518721782600, 15.78960981497080167503776889998, 16.43629843447801574311351383888, 17.027603623958283663192899399150, 17.89492216159980354910958735531, 18.54827549873987282133128950646, 19.40411935546024460021026682219