sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2704, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([0,13,28]))
pari:[g,chi] = znchar(Mod(2133,2704))
| Modulus: | \(2704\) | |
| Conductor: | \(2704\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2704}(53,\cdot)\)
\(\chi_{2704}(157,\cdot)\)
\(\chi_{2704}(261,\cdot)\)
\(\chi_{2704}(365,\cdot)\)
\(\chi_{2704}(469,\cdot)\)
\(\chi_{2704}(573,\cdot)\)
\(\chi_{2704}(781,\cdot)\)
\(\chi_{2704}(885,\cdot)\)
\(\chi_{2704}(989,\cdot)\)
\(\chi_{2704}(1093,\cdot)\)
\(\chi_{2704}(1197,\cdot)\)
\(\chi_{2704}(1301,\cdot)\)
\(\chi_{2704}(1405,\cdot)\)
\(\chi_{2704}(1509,\cdot)\)
\(\chi_{2704}(1613,\cdot)\)
\(\chi_{2704}(1717,\cdot)\)
\(\chi_{2704}(1821,\cdot)\)
\(\chi_{2704}(1925,\cdot)\)
\(\chi_{2704}(2133,\cdot)\)
\(\chi_{2704}(2237,\cdot)\)
\(\chi_{2704}(2341,\cdot)\)
\(\chi_{2704}(2445,\cdot)\)
\(\chi_{2704}(2549,\cdot)\)
\(\chi_{2704}(2653,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2367,677,1185)\) → \((1,i,e\left(\frac{7}{13}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 2704 }(2133, a) \) |
\(1\) | \(1\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(-i\) | \(e\left(\frac{33}{52}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)