sage: H = DirichletGroup(2704)
pari: g = idealstar(,2704,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 1248 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{4}\times C_{156}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{2704}(2367,\cdot)$, $\chi_{2704}(677,\cdot)$, $\chi_{2704}(1185,\cdot)$ |
First 32 of 1248 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2704}(1,\cdot)\) | 2704.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{2704}(3,\cdot)\) | 2704.cw | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{49}{156}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{19}{156}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2704}(5,\cdot)\) | 2704.ca | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(-1\) | \(e\left(\frac{15}{26}\right)\) | \(1\) |
\(\chi_{2704}(7,\cdot)\) | 2704.da | 156 | no | \(1\) | \(1\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{139}{156}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{113}{156}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2704}(9,\cdot)\) | 2704.cl | 78 | no | \(1\) | \(1\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2704}(11,\cdot)\) | 2704.cy | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{19}{156}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{49}{156}\right)\) | \(e\left(\frac{31}{78}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2704}(15,\cdot)\) | 2704.cq | 156 | no | \(1\) | \(1\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{113}{156}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{49}{156}\right)\) | \(e\left(\frac{139}{156}\right)\) | \(e\left(\frac{37}{78}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2704}(17,\cdot)\) | 2704.co | 78 | no | \(1\) | \(1\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{31}{78}\right)\) | \(e\left(\frac{37}{78}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2704}(19,\cdot)\) | 2704.bf | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{2704}(21,\cdot)\) | 2704.cf | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(1\) | \(e\left(\frac{4}{13}\right)\) | \(1\) |
\(\chi_{2704}(23,\cdot)\) | 2704.x | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2704}(25,\cdot)\) | 2704.bs | 26 | no | \(1\) | \(1\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(1\) | \(e\left(\frac{2}{13}\right)\) | \(1\) |
\(\chi_{2704}(27,\cdot)\) | 2704.cc | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(i\) | \(e\left(\frac{5}{52}\right)\) | \(1\) |
\(\chi_{2704}(29,\cdot)\) | 2704.cv | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{156}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2704}(31,\cdot)\) | 2704.ci | 52 | no | \(1\) | \(1\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(i\) | \(e\left(\frac{5}{52}\right)\) | \(1\) |
\(\chi_{2704}(33,\cdot)\) | 2704.db | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{137}{156}\right)\) | \(e\left(\frac{83}{156}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{2704}(35,\cdot)\) | 2704.cw | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{149}{156}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{131}{156}\right)\) | \(e\left(\frac{31}{78}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2704}(37,\cdot)\) | 2704.cz | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{121}{156}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{11}{156}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{115}{156}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2704}(41,\cdot)\) | 2704.cr | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{47}{156}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{97}{156}\right)\) | \(e\left(\frac{73}{156}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2704}(43,\cdot)\) | 2704.cu | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{35}{156}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{47}{156}\right)\) | \(e\left(\frac{20}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2704}(45,\cdot)\) | 2704.cz | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{83}{156}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{121}{156}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{17}{156}\right)\) | \(e\left(\frac{41}{78}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{2704}(47,\cdot)\) | 2704.ci | 52 | no | \(1\) | \(1\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(-i\) | \(e\left(\frac{15}{52}\right)\) | \(1\) |
\(\chi_{2704}(49,\cdot)\) | 2704.co | 78 | no | \(1\) | \(1\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{61}{78}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2704}(51,\cdot)\) | 2704.ce | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(i\) | \(e\left(\frac{29}{52}\right)\) | \(1\) |
\(\chi_{2704}(53,\cdot)\) | 2704.cd | 52 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(-i\) | \(e\left(\frac{49}{52}\right)\) | \(-1\) |
\(\chi_{2704}(55,\cdot)\) | 2704.cp | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2704}(57,\cdot)\) | 2704.ch | 52 | no | \(-1\) | \(1\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(i\) | \(e\left(\frac{19}{52}\right)\) | \(-1\) |
\(\chi_{2704}(59,\cdot)\) | 2704.cy | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{156}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{1}{156}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{53}{156}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{2704}(61,\cdot)\) | 2704.cv | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{83}{156}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{41}{78}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{29}{156}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{2704}(63,\cdot)\) | 2704.cq | 156 | no | \(1\) | \(1\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{155}{156}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{139}{156}\right)\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{2704}(67,\cdot)\) | 2704.cy | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{59}{156}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{7}{156}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{2704}(69,\cdot)\) | 2704.cx | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{23}{78}\right)\) | \(e\left(\frac{149}{156}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{1}{6}\right)\) |