Properties

Label 2700.cn
Modulus $2700$
Conductor $2700$
Order $90$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(90)) M = H._module chi = DirichletCharacter(H, M([45,25,63])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(59,2700)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2700\)
Conductor: \(2700\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(90\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{2700}(59,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{47}{90}\right)\)
\(\chi_{2700}(119,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{79}{90}\right)\)
\(\chi_{2700}(239,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{53}{90}\right)\)
\(\chi_{2700}(419,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{59}{90}\right)\)
\(\chi_{2700}(479,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{90}\right)\)
\(\chi_{2700}(659,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{7}{90}\right)\)
\(\chi_{2700}(779,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{71}{90}\right)\)
\(\chi_{2700}(839,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{13}{90}\right)\)
\(\chi_{2700}(959,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{77}{90}\right)\)
\(\chi_{2700}(1019,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{19}{90}\right)\)
\(\chi_{2700}(1139,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{83}{90}\right)\)
\(\chi_{2700}(1319,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{89}{90}\right)\)
\(\chi_{2700}(1379,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{31}{90}\right)\)
\(\chi_{2700}(1559,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{37}{90}\right)\)
\(\chi_{2700}(1679,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{11}{90}\right)\)
\(\chi_{2700}(1739,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{43}{90}\right)\)
\(\chi_{2700}(1859,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{17}{90}\right)\)
\(\chi_{2700}(1919,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{49}{90}\right)\)
\(\chi_{2700}(2039,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{23}{90}\right)\)
\(\chi_{2700}(2219,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{29}{90}\right)\)
\(\chi_{2700}(2279,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{61}{90}\right)\)
\(\chi_{2700}(2459,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{67}{90}\right)\)
\(\chi_{2700}(2579,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{41}{90}\right)\)
\(\chi_{2700}(2639,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{73}{90}\right)\)