sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2700, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([45,35,63]))
pari:[g,chi] = znchar(Mod(1559,2700))
Modulus: | \(2700\) | |
Conductor: | \(2700\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(90\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2700}(59,\cdot)\)
\(\chi_{2700}(119,\cdot)\)
\(\chi_{2700}(239,\cdot)\)
\(\chi_{2700}(419,\cdot)\)
\(\chi_{2700}(479,\cdot)\)
\(\chi_{2700}(659,\cdot)\)
\(\chi_{2700}(779,\cdot)\)
\(\chi_{2700}(839,\cdot)\)
\(\chi_{2700}(959,\cdot)\)
\(\chi_{2700}(1019,\cdot)\)
\(\chi_{2700}(1139,\cdot)\)
\(\chi_{2700}(1319,\cdot)\)
\(\chi_{2700}(1379,\cdot)\)
\(\chi_{2700}(1559,\cdot)\)
\(\chi_{2700}(1679,\cdot)\)
\(\chi_{2700}(1739,\cdot)\)
\(\chi_{2700}(1859,\cdot)\)
\(\chi_{2700}(1919,\cdot)\)
\(\chi_{2700}(2039,\cdot)\)
\(\chi_{2700}(2219,\cdot)\)
\(\chi_{2700}(2279,\cdot)\)
\(\chi_{2700}(2459,\cdot)\)
\(\chi_{2700}(2579,\cdot)\)
\(\chi_{2700}(2639,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,1001,2377)\) → \((-1,e\left(\frac{7}{18}\right),e\left(\frac{7}{10}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2700 }(1559, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{37}{90}\right)\) |
sage:chi.jacobi_sum(n)