sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2700, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,16,9]))
pari:[g,chi] = znchar(Mod(607,2700))
\(\chi_{2700}(7,\cdot)\)
\(\chi_{2700}(43,\cdot)\)
\(\chi_{2700}(607,\cdot)\)
\(\chi_{2700}(643,\cdot)\)
\(\chi_{2700}(907,\cdot)\)
\(\chi_{2700}(943,\cdot)\)
\(\chi_{2700}(1507,\cdot)\)
\(\chi_{2700}(1543,\cdot)\)
\(\chi_{2700}(1807,\cdot)\)
\(\chi_{2700}(1843,\cdot)\)
\(\chi_{2700}(2407,\cdot)\)
\(\chi_{2700}(2443,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1351,1001,2377)\) → \((-1,e\left(\frac{4}{9}\right),i)\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2700 }(607, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) |
sage:chi.jacobi_sum(n)