Properties

Label 2700.2057
Modulus $2700$
Conductor $135$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([0,10,9]))
 
Copy content pari:[g,chi] = znchar(Mod(2057,2700))
 

Basic properties

Modulus: \(2700\)
Conductor: \(135\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{135}(32,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2700.cd

\(\chi_{2700}(257,\cdot)\) \(\chi_{2700}(293,\cdot)\) \(\chi_{2700}(857,\cdot)\) \(\chi_{2700}(893,\cdot)\) \(\chi_{2700}(1157,\cdot)\) \(\chi_{2700}(1193,\cdot)\) \(\chi_{2700}(1757,\cdot)\) \(\chi_{2700}(1793,\cdot)\) \(\chi_{2700}(2057,\cdot)\) \(\chi_{2700}(2093,\cdot)\) \(\chi_{2700}(2657,\cdot)\) \(\chi_{2700}(2693,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: \(\Q(\zeta_{135})^+\)

Values on generators

\((1351,1001,2377)\) → \((1,e\left(\frac{5}{18}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2700 }(2057, a) \) \(1\)\(1\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{13}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2700 }(2057,a) \;\) at \(\;a = \) e.g. 2