sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2668, base_ring=CyclotomicField(154))
M = H._module
chi = DirichletCharacter(H, M([77,21,11]))
pari:[g,chi] = znchar(Mod(1367,2668))
Modulus: | \(2668\) | |
Conductor: | \(2668\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(154\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2668}(51,\cdot)\)
\(\chi_{2668}(63,\cdot)\)
\(\chi_{2668}(67,\cdot)\)
\(\chi_{2668}(267,\cdot)\)
\(\chi_{2668}(283,\cdot)\)
\(\chi_{2668}(295,\cdot)\)
\(\chi_{2668}(383,\cdot)\)
\(\chi_{2668}(411,\cdot)\)
\(\chi_{2668}(419,\cdot)\)
\(\chi_{2668}(527,\cdot)\)
\(\chi_{2668}(615,\cdot)\)
\(\chi_{2668}(631,\cdot)\)
\(\chi_{2668}(651,\cdot)\)
\(\chi_{2668}(747,\cdot)\)
\(\chi_{2668}(787,\cdot)\)
\(\chi_{2668}(847,\cdot)\)
\(\chi_{2668}(879,\cdot)\)
\(\chi_{2668}(963,\cdot)\)
\(\chi_{2668}(999,\cdot)\)
\(\chi_{2668}(1019,\cdot)\)
\(\chi_{2668}(1079,\cdot)\)
\(\chi_{2668}(1095,\cdot)\)
\(\chi_{2668}(1111,\cdot)\)
\(\chi_{2668}(1115,\cdot)\)
\(\chi_{2668}(1211,\cdot)\)
\(\chi_{2668}(1339,\cdot)\)
\(\chi_{2668}(1367,\cdot)\)
\(\chi_{2668}(1443,\cdot)\)
\(\chi_{2668}(1459,\cdot)\)
\(\chi_{2668}(1463,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1335,465,553)\) → \((-1,e\left(\frac{3}{22}\right),e\left(\frac{1}{14}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 2668 }(1367, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{77}\right)\) | \(e\left(\frac{109}{154}\right)\) | \(e\left(\frac{73}{77}\right)\) | \(e\left(\frac{6}{77}\right)\) | \(e\left(\frac{79}{154}\right)\) | \(e\left(\frac{15}{77}\right)\) | \(e\left(\frac{115}{154}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{29}{154}\right)\) | \(e\left(\frac{76}{77}\right)\) |
sage:chi.jacobi_sum(n)