Properties

Label 2668.1111
Modulus $2668$
Conductor $2668$
Order $154$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2668, base_ring=CyclotomicField(154)) M = H._module chi = DirichletCharacter(H, M([77,133,55]))
 
Copy content pari:[g,chi] = znchar(Mod(1111,2668))
 

Basic properties

Modulus: \(2668\)
Conductor: \(2668\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(154\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2668.bq

\(\chi_{2668}(51,\cdot)\) \(\chi_{2668}(63,\cdot)\) \(\chi_{2668}(67,\cdot)\) \(\chi_{2668}(267,\cdot)\) \(\chi_{2668}(283,\cdot)\) \(\chi_{2668}(295,\cdot)\) \(\chi_{2668}(383,\cdot)\) \(\chi_{2668}(411,\cdot)\) \(\chi_{2668}(419,\cdot)\) \(\chi_{2668}(527,\cdot)\) \(\chi_{2668}(615,\cdot)\) \(\chi_{2668}(631,\cdot)\) \(\chi_{2668}(651,\cdot)\) \(\chi_{2668}(747,\cdot)\) \(\chi_{2668}(787,\cdot)\) \(\chi_{2668}(847,\cdot)\) \(\chi_{2668}(879,\cdot)\) \(\chi_{2668}(963,\cdot)\) \(\chi_{2668}(999,\cdot)\) \(\chi_{2668}(1019,\cdot)\) \(\chi_{2668}(1079,\cdot)\) \(\chi_{2668}(1095,\cdot)\) \(\chi_{2668}(1111,\cdot)\) \(\chi_{2668}(1115,\cdot)\) \(\chi_{2668}(1211,\cdot)\) \(\chi_{2668}(1339,\cdot)\) \(\chi_{2668}(1367,\cdot)\) \(\chi_{2668}(1443,\cdot)\) \(\chi_{2668}(1459,\cdot)\) \(\chi_{2668}(1463,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{77})$
Fixed field: Number field defined by a degree 154 polynomial (not computed)

Values on generators

\((1335,465,553)\) → \((-1,e\left(\frac{19}{22}\right),e\left(\frac{5}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 2668 }(1111, a) \) \(1\)\(1\)\(e\left(\frac{8}{77}\right)\)\(e\left(\frac{111}{154}\right)\)\(e\left(\frac{15}{77}\right)\)\(e\left(\frac{16}{77}\right)\)\(e\left(\frac{31}{154}\right)\)\(e\left(\frac{40}{77}\right)\)\(e\left(\frac{127}{154}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{103}{154}\right)\)\(e\left(\frac{23}{77}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2668 }(1111,a) \;\) at \(\;a = \) e.g. 2