Properties

Label 2667.1364
Modulus $2667$
Conductor $2667$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([21,21,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1364,2667))
 

Basic properties

Modulus: \(2667\)
Conductor: \(2667\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(42\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2667.dw

\(\chi_{2667}(188,\cdot)\) \(\chi_{2667}(419,\cdot)\) \(\chi_{2667}(503,\cdot)\) \(\chi_{2667}(608,\cdot)\) \(\chi_{2667}(965,\cdot)\) \(\chi_{2667}(1133,\cdot)\) \(\chi_{2667}(1343,\cdot)\) \(\chi_{2667}(1364,\cdot)\) \(\chi_{2667}(1574,\cdot)\) \(\chi_{2667}(1952,\cdot)\) \(\chi_{2667}(2057,\cdot)\) \(\chi_{2667}(2246,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((890,1144,2416)\) → \((-1,-1,e\left(\frac{1}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 2667 }(1364, a) \) \(1\)\(1\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{41}{42}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{17}{21}\right)\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2667 }(1364,a) \;\) at \(\;a = \) e.g. 2