Properties

Label 2664.283
Modulus $2664$
Conductor $2664$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2664, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([18,18,12,29]))
 
Copy content pari:[g,chi] = znchar(Mod(283,2664))
 

Basic properties

Modulus: \(2664\)
Conductor: \(2664\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2664.go

\(\chi_{2664}(187,\cdot)\) \(\chi_{2664}(283,\cdot)\) \(\chi_{2664}(331,\cdot)\) \(\chi_{2664}(499,\cdot)\) \(\chi_{2664}(979,\cdot)\) \(\chi_{2664}(1051,\cdot)\) \(\chi_{2664}(1795,\cdot)\) \(\chi_{2664}(2011,\cdot)\) \(\chi_{2664}(2131,\cdot)\) \(\chi_{2664}(2203,\cdot)\) \(\chi_{2664}(2299,\cdot)\) \(\chi_{2664}(2659,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

\((1999,1333,2369,1297)\) → \((-1,-1,e\left(\frac{1}{3}\right),e\left(\frac{29}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 2664 }(283, a) \) \(1\)\(1\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{11}{18}\right)\)\(-1\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{7}{36}\right)\)\(i\)\(e\left(\frac{7}{18}\right)\)\(-i\)\(e\left(\frac{5}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2664 }(283,a) \;\) at \(\;a = \) e.g. 2