Properties

Label 2600.341
Modulus $2600$
Conductor $2600$
Order $30$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2600, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,15,6,10]))
 
Copy content pari:[g,chi] = znchar(Mod(341,2600))
 

Basic properties

Modulus: \(2600\)
Conductor: \(2600\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2600.es

\(\chi_{2600}(61,\cdot)\) \(\chi_{2600}(341,\cdot)\) \(\chi_{2600}(581,\cdot)\) \(\chi_{2600}(861,\cdot)\) \(\chi_{2600}(1381,\cdot)\) \(\chi_{2600}(1621,\cdot)\) \(\chi_{2600}(2141,\cdot)\) \(\chi_{2600}(2421,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((1951,1301,1977,1601)\) → \((1,-1,e\left(\frac{1}{5}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2600 }(341, a) \) \(1\)\(1\)\(e\left(\frac{7}{30}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{7}{30}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2600 }(341,a) \;\) at \(\;a = \) e.g. 2