Properties

Label 2600.es
Modulus $2600$
Conductor $2600$
Order $30$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2600, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,15,24,20])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(61,2600)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2600\)
Conductor: \(2600\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{2600}(61,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{2600}(341,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{30}\right)\)
\(\chi_{2600}(581,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{29}{30}\right)\)
\(\chi_{2600}(861,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{13}{30}\right)\)
\(\chi_{2600}(1381,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{19}{30}\right)\)
\(\chi_{2600}(1621,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{30}\right)\)
\(\chi_{2600}(2141,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{17}{30}\right)\)
\(\chi_{2600}(2421,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{30}\right)\)