sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,0,1,0]))
pari:[g,chi] = znchar(Mod(1249,2600))
\(\chi_{2600}(1249,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1951,1301,1977,1601)\) → \((1,1,-1,1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
| \( \chi_{ 2600 }(1249, a) \) |
\(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) |
sage:chi.jacobi_sum(n)