sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(259, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,17]))
pari:[g,chi] = znchar(Mod(55,259))
Modulus: | \(259\) | |
Conductor: | \(259\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{259}(13,\cdot)\)
\(\chi_{259}(20,\cdot)\)
\(\chi_{259}(55,\cdot)\)
\(\chi_{259}(69,\cdot)\)
\(\chi_{259}(76,\cdot)\)
\(\chi_{259}(146,\cdot)\)
\(\chi_{259}(153,\cdot)\)
\(\chi_{259}(167,\cdot)\)
\(\chi_{259}(202,\cdot)\)
\(\chi_{259}(209,\cdot)\)
\(\chi_{259}(237,\cdot)\)
\(\chi_{259}(244,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((38,113)\) → \((-1,e\left(\frac{17}{36}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 259 }(55, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)