Properties

Label 2580.2519
Modulus $2580$
Conductor $2580$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2580, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([21,21,21,8]))
 
Copy content pari:[g,chi] = znchar(Mod(2519,2580))
 

Basic properties

Modulus: \(2580\)
Conductor: \(2580\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(42\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2580.cw

\(\chi_{2580}(239,\cdot)\) \(\chi_{2580}(359,\cdot)\) \(\chi_{2580}(539,\cdot)\) \(\chi_{2580}(599,\cdot)\) \(\chi_{2580}(659,\cdot)\) \(\chi_{2580}(719,\cdot)\) \(\chi_{2580}(959,\cdot)\) \(\chi_{2580}(1199,\cdot)\) \(\chi_{2580}(1859,\cdot)\) \(\chi_{2580}(2159,\cdot)\) \(\chi_{2580}(2339,\cdot)\) \(\chi_{2580}(2519,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((1291,1721,517,1981)\) → \((-1,-1,-1,e\left(\frac{4}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2580 }(2519, a) \) \(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{5}{42}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{41}{42}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{9}{14}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2580 }(2519,a) \;\) at \(\;a = \) e.g. 2