sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2580, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([42,42,21,34]))
pari:[g,chi] = znchar(Mod(1187,2580))
Modulus: | \(2580\) | |
Conductor: | \(2580\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2580}(227,\cdot)\)
\(\chi_{2580}(263,\cdot)\)
\(\chi_{2580}(287,\cdot)\)
\(\chi_{2580}(347,\cdot)\)
\(\chi_{2580}(407,\cdot)\)
\(\chi_{2580}(503,\cdot)\)
\(\chi_{2580}(587,\cdot)\)
\(\chi_{2580}(707,\cdot)\)
\(\chi_{2580}(743,\cdot)\)
\(\chi_{2580}(803,\cdot)\)
\(\chi_{2580}(863,\cdot)\)
\(\chi_{2580}(923,\cdot)\)
\(\chi_{2580}(1007,\cdot)\)
\(\chi_{2580}(1103,\cdot)\)
\(\chi_{2580}(1187,\cdot)\)
\(\chi_{2580}(1223,\cdot)\)
\(\chi_{2580}(1367,\cdot)\)
\(\chi_{2580}(1523,\cdot)\)
\(\chi_{2580}(1667,\cdot)\)
\(\chi_{2580}(1703,\cdot)\)
\(\chi_{2580}(1883,\cdot)\)
\(\chi_{2580}(2183,\cdot)\)
\(\chi_{2580}(2327,\cdot)\)
\(\chi_{2580}(2567,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1291,1721,517,1981)\) → \((-1,-1,i,e\left(\frac{17}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 2580 }(1187, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{13}{14}\right)\) |
sage:chi.jacobi_sum(n)