L(s) = 1 | + (0.866 − 0.5i)7-s + (0.623 + 0.781i)11-s + (−0.294 − 0.955i)13-s + (0.680 + 0.733i)17-s + (−0.365 − 0.930i)19-s + (0.149 + 0.988i)23-s + (−0.826 − 0.563i)29-s + (−0.0747 + 0.997i)31-s + (0.866 + 0.5i)37-s + (0.900 − 0.433i)41-s + (0.781 + 0.623i)47-s + (0.5 − 0.866i)49-s + (−0.294 + 0.955i)53-s + (0.222 + 0.974i)59-s + (−0.0747 − 0.997i)61-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)7-s + (0.623 + 0.781i)11-s + (−0.294 − 0.955i)13-s + (0.680 + 0.733i)17-s + (−0.365 − 0.930i)19-s + (0.149 + 0.988i)23-s + (−0.826 − 0.563i)29-s + (−0.0747 + 0.997i)31-s + (0.866 + 0.5i)37-s + (0.900 − 0.433i)41-s + (0.781 + 0.623i)47-s + (0.5 − 0.866i)49-s + (−0.294 + 0.955i)53-s + (0.222 + 0.974i)59-s + (−0.0747 − 0.997i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2580 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0296i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2580 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0296i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.006374482 + 0.02974303067i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.006374482 + 0.02974303067i\) |
\(L(1)\) |
\(\approx\) |
\(1.258629143 + 0.01725458701i\) |
\(L(1)\) |
\(\approx\) |
\(1.258629143 + 0.01725458701i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
| 43 | \( 1 \) |
good | 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.623 + 0.781i)T \) |
| 13 | \( 1 + (-0.294 - 0.955i)T \) |
| 17 | \( 1 + (0.680 + 0.733i)T \) |
| 19 | \( 1 + (-0.365 - 0.930i)T \) |
| 23 | \( 1 + (0.149 + 0.988i)T \) |
| 29 | \( 1 + (-0.826 - 0.563i)T \) |
| 31 | \( 1 + (-0.0747 + 0.997i)T \) |
| 37 | \( 1 + (0.866 + 0.5i)T \) |
| 41 | \( 1 + (0.900 - 0.433i)T \) |
| 47 | \( 1 + (0.781 + 0.623i)T \) |
| 53 | \( 1 + (-0.294 + 0.955i)T \) |
| 59 | \( 1 + (0.222 + 0.974i)T \) |
| 61 | \( 1 + (-0.0747 - 0.997i)T \) |
| 67 | \( 1 + (0.930 - 0.365i)T \) |
| 71 | \( 1 + (0.988 + 0.149i)T \) |
| 73 | \( 1 + (0.294 + 0.955i)T \) |
| 79 | \( 1 + (-0.5 - 0.866i)T \) |
| 83 | \( 1 + (-0.563 - 0.826i)T \) |
| 89 | \( 1 + (-0.826 + 0.563i)T \) |
| 97 | \( 1 + (-0.781 + 0.623i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.22432110185768280267521068671, −18.57870548005067467806441011563, −18.24597935853104736080945233344, −16.99965892518418468111238523660, −16.705268445431479440074255650240, −15.97470439333351682772947442511, −14.82817290720639131563620246570, −14.46027023774881847596333420726, −13.93401496015486213903035184007, −12.82770754092663641426883817824, −12.1333580474885023707620587350, −11.40420919663270922390017370438, −10.99615300871984486857098892660, −9.83114144647120127656275740224, −9.19045557975179427735617502196, −8.449788611107782098934346971541, −7.76802996868862534404156551853, −6.87992172764313103914132691621, −5.99599959321670604161249122490, −5.3562994632111019477384757775, −4.398593113012332070490528505978, −3.736831406737640526465366871207, −2.58332176336580934139887459566, −1.85160614495325736392758330159, −0.833515022917842278541104848532,
0.91929302185232810420059253909, 1.69819500297849965892907340254, 2.695320774141907264540183015824, 3.744915105325744961219415402131, 4.44305521462934124777973155897, 5.24123219547223591997077950909, 6.017027369183195439361796677441, 7.11716738762739467626924160881, 7.602372023014923393166563913588, 8.34535548983795022018067394832, 9.29312654143088477768205430564, 9.98294468072537345283670858569, 10.81635531082856436774685867975, 11.35469496114234446809804235073, 12.310405942330944147163016252875, 12.85655344446552750152563209598, 13.75880736397298248359401743506, 14.48047636444749454200520504184, 15.106995262972614915157693591988, 15.626644936689798476237901684806, 16.86005240112635390679398098228, 17.340087311905559926779607195557, 17.71790389827783236494305871614, 18.65765593749827027412241207285, 19.58762438497639275410193415836