Properties

Label 2565.fs
Modulus $2565$
Conductor $513$
Order $18$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2565, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([11,0,10])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(131,2565)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2565\)
Conductor: \(513\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 513.cm
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(22\)
\(\chi_{2565}(131,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(-1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{2565}(821,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(-1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{2565}(1031,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(-1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{2565}(1586,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(-1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{2565}(1811,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(-1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{2565}(2201,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(-1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{9}\right)\)