Properties

Label 2565.2201
Modulus $2565$
Conductor $513$
Order $18$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2565, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([17,0,4]))
 
Copy content pari:[g,chi] = znchar(Mod(2201,2565))
 

Basic properties

Modulus: \(2565\)
Conductor: \(513\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{513}(149,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2565.fs

\(\chi_{2565}(131,\cdot)\) \(\chi_{2565}(821,\cdot)\) \(\chi_{2565}(1031,\cdot)\) \(\chi_{2565}(1586,\cdot)\) \(\chi_{2565}(1811,\cdot)\) \(\chi_{2565}(2201,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((191,1027,1351)\) → \((e\left(\frac{17}{18}\right),1,e\left(\frac{2}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(22\)
\( \chi_{ 2565 }(2201, a) \) \(-1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{4}{9}\right)\)\(-1\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{1}{9}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2565 }(2201,a) \;\) at \(\;a = \) e.g. 2