Properties

Label 2523.w
Modulus $2523$
Conductor $841$
Order $812$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2523, base_ring=CyclotomicField(812)) M = H._module chi = DirichletCharacter(H, M([0,303])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(10,2523)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2523\)
Conductor: \(841\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(812\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 841.l
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{812})$
Fixed field: Number field defined by a degree 812 polynomial (not computed)

First 31 of 336 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{2523}(10,\cdot)\) \(-1\) \(1\) \(e\left(\frac{303}{812}\right)\) \(e\left(\frac{303}{406}\right)\) \(e\left(\frac{281}{406}\right)\) \(e\left(\frac{62}{203}\right)\) \(e\left(\frac{97}{812}\right)\) \(e\left(\frac{53}{812}\right)\) \(e\left(\frac{183}{812}\right)\) \(e\left(\frac{11}{406}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{100}{203}\right)\)
\(\chi_{2523}(19,\cdot)\) \(-1\) \(1\) \(e\left(\frac{625}{812}\right)\) \(e\left(\frac{219}{406}\right)\) \(e\left(\frac{183}{406}\right)\) \(e\left(\frac{83}{203}\right)\) \(e\left(\frac{251}{812}\right)\) \(e\left(\frac{179}{812}\right)\) \(e\left(\frac{281}{812}\right)\) \(e\left(\frac{221}{406}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{16}{203}\right)\)
\(\chi_{2523}(31,\cdot)\) \(-1\) \(1\) \(e\left(\frac{421}{812}\right)\) \(e\left(\frac{15}{406}\right)\) \(e\left(\frac{235}{406}\right)\) \(e\left(\frac{192}{203}\right)\) \(e\left(\frac{451}{812}\right)\) \(e\left(\frac{79}{812}\right)\) \(e\left(\frac{809}{812}\right)\) \(e\left(\frac{93}{406}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{15}{203}\right)\)
\(\chi_{2523}(37,\cdot)\) \(-1\) \(1\) \(e\left(\frac{311}{812}\right)\) \(e\left(\frac{311}{406}\right)\) \(e\left(\frac{271}{406}\right)\) \(e\left(\frac{2}{203}\right)\) \(e\left(\frac{121}{812}\right)\) \(e\left(\frac{41}{812}\right)\) \(e\left(\frac{19}{812}\right)\) \(e\left(\frac{223}{406}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{108}{203}\right)\)
\(\chi_{2523}(40,\cdot)\) \(-1\) \(1\) \(e\left(\frac{305}{812}\right)\) \(e\left(\frac{305}{406}\right)\) \(e\left(\frac{177}{406}\right)\) \(e\left(\frac{47}{203}\right)\) \(e\left(\frac{103}{812}\right)\) \(e\left(\frac{659}{812}\right)\) \(e\left(\frac{345}{812}\right)\) \(e\left(\frac{267}{406}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{102}{203}\right)\)
\(\chi_{2523}(43,\cdot)\) \(-1\) \(1\) \(e\left(\frac{321}{812}\right)\) \(e\left(\frac{321}{406}\right)\) \(e\left(\frac{157}{406}\right)\) \(e\left(\frac{130}{203}\right)\) \(e\left(\frac{151}{812}\right)\) \(e\left(\frac{635}{812}\right)\) \(e\left(\frac{17}{812}\right)\) \(e\left(\frac{285}{406}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{118}{203}\right)\)
\(\chi_{2523}(55,\cdot)\) \(-1\) \(1\) \(e\left(\frac{383}{812}\right)\) \(e\left(\frac{383}{406}\right)\) \(e\left(\frac{181}{406}\right)\) \(e\left(\frac{71}{203}\right)\) \(e\left(\frac{337}{812}\right)\) \(e\left(\frac{745}{812}\right)\) \(e\left(\frac{167}{812}\right)\) \(e\left(\frac{101}{406}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{180}{203}\right)\)
\(\chi_{2523}(61,\cdot)\) \(-1\) \(1\) \(e\left(\frac{285}{812}\right)\) \(e\left(\frac{285}{406}\right)\) \(e\left(\frac{405}{406}\right)\) \(e\left(\frac{197}{203}\right)\) \(e\left(\frac{43}{812}\right)\) \(e\left(\frac{283}{812}\right)\) \(e\left(\frac{349}{812}\right)\) \(e\left(\frac{143}{406}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{82}{203}\right)\)
\(\chi_{2523}(73,\cdot)\) \(-1\) \(1\) \(e\left(\frac{139}{812}\right)\) \(e\left(\frac{139}{406}\right)\) \(e\left(\frac{283}{406}\right)\) \(e\left(\frac{74}{203}\right)\) \(e\left(\frac{417}{812}\right)\) \(e\left(\frac{705}{812}\right)\) \(e\left(\frac{703}{812}\right)\) \(e\left(\frac{131}{406}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{139}{203}\right)\)
\(\chi_{2523}(76,\cdot)\) \(-1\) \(1\) \(e\left(\frac{627}{812}\right)\) \(e\left(\frac{221}{406}\right)\) \(e\left(\frac{79}{406}\right)\) \(e\left(\frac{68}{203}\right)\) \(e\left(\frac{257}{812}\right)\) \(e\left(\frac{785}{812}\right)\) \(e\left(\frac{443}{812}\right)\) \(e\left(\frac{71}{406}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{18}{203}\right)\)
\(\chi_{2523}(79,\cdot)\) \(-1\) \(1\) \(e\left(\frac{297}{812}\right)\) \(e\left(\frac{297}{406}\right)\) \(e\left(\frac{187}{406}\right)\) \(e\left(\frac{107}{203}\right)\) \(e\left(\frac{79}{812}\right)\) \(e\left(\frac{671}{812}\right)\) \(e\left(\frac{509}{812}\right)\) \(e\left(\frac{55}{406}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{94}{203}\right)\)
\(\chi_{2523}(85,\cdot)\) \(-1\) \(1\) \(e\left(\frac{771}{812}\right)\) \(e\left(\frac{365}{406}\right)\) \(e\left(\frac{305}{406}\right)\) \(e\left(\frac{3}{203}\right)\) \(e\left(\frac{689}{812}\right)\) \(e\left(\frac{569}{812}\right)\) \(e\left(\frac{739}{812}\right)\) \(e\left(\frac{233}{406}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{162}{203}\right)\)
\(\chi_{2523}(97,\cdot)\) \(-1\) \(1\) \(e\left(\frac{555}{812}\right)\) \(e\left(\frac{149}{406}\right)\) \(e\left(\frac{169}{406}\right)\) \(e\left(\frac{202}{203}\right)\) \(e\left(\frac{41}{812}\right)\) \(e\left(\frac{81}{812}\right)\) \(e\left(\frac{295}{812}\right)\) \(e\left(\frac{193}{406}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{149}{203}\right)\)
\(\chi_{2523}(106,\cdot)\) \(-1\) \(1\) \(e\left(\frac{373}{812}\right)\) \(e\left(\frac{373}{406}\right)\) \(e\left(\frac{295}{406}\right)\) \(e\left(\frac{146}{203}\right)\) \(e\left(\frac{307}{812}\right)\) \(e\left(\frac{151}{812}\right)\) \(e\left(\frac{169}{812}\right)\) \(e\left(\frac{39}{406}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{170}{203}\right)\)
\(\chi_{2523}(118,\cdot)\) \(-1\) \(1\) \(e\left(\frac{57}{812}\right)\) \(e\left(\frac{57}{406}\right)\) \(e\left(\frac{81}{406}\right)\) \(e\left(\frac{80}{203}\right)\) \(e\left(\frac{171}{812}\right)\) \(e\left(\frac{219}{812}\right)\) \(e\left(\frac{557}{812}\right)\) \(e\left(\frac{191}{406}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{57}{203}\right)\)
\(\chi_{2523}(124,\cdot)\) \(-1\) \(1\) \(e\left(\frac{423}{812}\right)\) \(e\left(\frac{17}{406}\right)\) \(e\left(\frac{131}{406}\right)\) \(e\left(\frac{177}{203}\right)\) \(e\left(\frac{457}{812}\right)\) \(e\left(\frac{685}{812}\right)\) \(e\left(\frac{159}{812}\right)\) \(e\left(\frac{349}{406}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{17}{203}\right)\)
\(\chi_{2523}(127,\cdot)\) \(-1\) \(1\) \(e\left(\frac{165}{812}\right)\) \(e\left(\frac{165}{406}\right)\) \(e\left(\frac{149}{406}\right)\) \(e\left(\frac{82}{203}\right)\) \(e\left(\frac{495}{812}\right)\) \(e\left(\frac{463}{812}\right)\) \(e\left(\frac{373}{812}\right)\) \(e\left(\frac{211}{406}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{165}{203}\right)\)
\(\chi_{2523}(130,\cdot)\) \(-1\) \(1\) \(e\left(\frac{153}{812}\right)\) \(e\left(\frac{153}{406}\right)\) \(e\left(\frac{367}{406}\right)\) \(e\left(\frac{172}{203}\right)\) \(e\left(\frac{459}{812}\right)\) \(e\left(\frac{75}{812}\right)\) \(e\left(\frac{213}{812}\right)\) \(e\left(\frac{299}{406}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{153}{203}\right)\)
\(\chi_{2523}(142,\cdot)\) \(-1\) \(1\) \(e\left(\frac{355}{812}\right)\) \(e\left(\frac{355}{406}\right)\) \(e\left(\frac{13}{406}\right)\) \(e\left(\frac{78}{203}\right)\) \(e\left(\frac{253}{812}\right)\) \(e\left(\frac{381}{812}\right)\) \(e\left(\frac{335}{812}\right)\) \(e\left(\frac{171}{406}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{152}{203}\right)\)
\(\chi_{2523}(148,\cdot)\) \(-1\) \(1\) \(e\left(\frac{313}{812}\right)\) \(e\left(\frac{313}{406}\right)\) \(e\left(\frac{167}{406}\right)\) \(e\left(\frac{190}{203}\right)\) \(e\left(\frac{127}{812}\right)\) \(e\left(\frac{647}{812}\right)\) \(e\left(\frac{181}{812}\right)\) \(e\left(\frac{73}{406}\right)\) \(e\left(\frac{9}{28}\right)\) \(e\left(\frac{110}{203}\right)\)
\(\chi_{2523}(160,\cdot)\) \(-1\) \(1\) \(e\left(\frac{307}{812}\right)\) \(e\left(\frac{307}{406}\right)\) \(e\left(\frac{73}{406}\right)\) \(e\left(\frac{32}{203}\right)\) \(e\left(\frac{109}{812}\right)\) \(e\left(\frac{453}{812}\right)\) \(e\left(\frac{507}{812}\right)\) \(e\left(\frac{117}{406}\right)\) \(e\left(\frac{15}{28}\right)\) \(e\left(\frac{104}{203}\right)\)
\(\chi_{2523}(163,\cdot)\) \(-1\) \(1\) \(e\left(\frac{767}{812}\right)\) \(e\left(\frac{361}{406}\right)\) \(e\left(\frac{107}{406}\right)\) \(e\left(\frac{33}{203}\right)\) \(e\left(\frac{677}{812}\right)\) \(e\left(\frac{169}{812}\right)\) \(e\left(\frac{415}{812}\right)\) \(e\left(\frac{127}{406}\right)\) \(e\left(\frac{3}{28}\right)\) \(e\left(\frac{158}{203}\right)\)
\(\chi_{2523}(166,\cdot)\) \(-1\) \(1\) \(e\left(\frac{185}{812}\right)\) \(e\left(\frac{185}{406}\right)\) \(e\left(\frac{327}{406}\right)\) \(e\left(\frac{135}{203}\right)\) \(e\left(\frac{555}{812}\right)\) \(e\left(\frac{27}{812}\right)\) \(e\left(\frac{369}{812}\right)\) \(e\left(\frac{335}{406}\right)\) \(e\left(\frac{25}{28}\right)\) \(e\left(\frac{185}{203}\right)\)
\(\chi_{2523}(172,\cdot)\) \(-1\) \(1\) \(e\left(\frac{323}{812}\right)\) \(e\left(\frac{323}{406}\right)\) \(e\left(\frac{53}{406}\right)\) \(e\left(\frac{115}{203}\right)\) \(e\left(\frac{157}{812}\right)\) \(e\left(\frac{429}{812}\right)\) \(e\left(\frac{179}{812}\right)\) \(e\left(\frac{135}{406}\right)\) \(e\left(\frac{27}{28}\right)\) \(e\left(\frac{120}{203}\right)\)
\(\chi_{2523}(184,\cdot)\) \(-1\) \(1\) \(e\left(\frac{807}{812}\right)\) \(e\left(\frac{401}{406}\right)\) \(e\left(\frac{57}{406}\right)\) \(e\left(\frac{139}{203}\right)\) \(e\left(\frac{797}{812}\right)\) \(e\left(\frac{109}{812}\right)\) \(e\left(\frac{407}{812}\right)\) \(e\left(\frac{375}{406}\right)\) \(e\left(\frac{19}{28}\right)\) \(e\left(\frac{198}{203}\right)\)
\(\chi_{2523}(193,\cdot)\) \(-1\) \(1\) \(e\left(\frac{121}{812}\right)\) \(e\left(\frac{121}{406}\right)\) \(e\left(\frac{1}{406}\right)\) \(e\left(\frac{6}{203}\right)\) \(e\left(\frac{363}{812}\right)\) \(e\left(\frac{123}{812}\right)\) \(e\left(\frac{57}{812}\right)\) \(e\left(\frac{263}{406}\right)\) \(e\left(\frac{5}{28}\right)\) \(e\left(\frac{121}{203}\right)\)
\(\chi_{2523}(205,\cdot)\) \(-1\) \(1\) \(e\left(\frac{505}{812}\right)\) \(e\left(\frac{99}{406}\right)\) \(e\left(\frac{333}{406}\right)\) \(e\left(\frac{171}{203}\right)\) \(e\left(\frac{703}{812}\right)\) \(e\left(\frac{359}{812}\right)\) \(e\left(\frac{305}{812}\right)\) \(e\left(\frac{289}{406}\right)\) \(e\left(\frac{13}{28}\right)\) \(e\left(\frac{99}{203}\right)\)
\(\chi_{2523}(211,\cdot)\) \(-1\) \(1\) \(e\left(\frac{535}{812}\right)\) \(e\left(\frac{129}{406}\right)\) \(e\left(\frac{397}{406}\right)\) \(e\left(\frac{149}{203}\right)\) \(e\left(\frac{793}{812}\right)\) \(e\left(\frac{517}{812}\right)\) \(e\left(\frac{299}{812}\right)\) \(e\left(\frac{69}{406}\right)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{129}{203}\right)\)
\(\chi_{2523}(214,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{812}\right)\) \(e\left(\frac{25}{406}\right)\) \(e\left(\frac{121}{406}\right)\) \(e\left(\frac{117}{203}\right)\) \(e\left(\frac{75}{812}\right)\) \(e\left(\frac{267}{812}\right)\) \(e\left(\frac{401}{812}\right)\) \(e\left(\frac{155}{406}\right)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{25}{203}\right)\)
\(\chi_{2523}(217,\cdot)\) \(-1\) \(1\) \(e\left(\frac{797}{812}\right)\) \(e\left(\frac{391}{406}\right)\) \(e\left(\frac{171}{406}\right)\) \(e\left(\frac{11}{203}\right)\) \(e\left(\frac{767}{812}\right)\) \(e\left(\frac{327}{812}\right)\) \(e\left(\frac{409}{812}\right)\) \(e\left(\frac{313}{406}\right)\) \(e\left(\frac{1}{28}\right)\) \(e\left(\frac{188}{203}\right)\)
\(\chi_{2523}(229,\cdot)\) \(-1\) \(1\) \(e\left(\frac{327}{812}\right)\) \(e\left(\frac{327}{406}\right)\) \(e\left(\frac{251}{406}\right)\) \(e\left(\frac{85}{203}\right)\) \(e\left(\frac{169}{812}\right)\) \(e\left(\frac{17}{812}\right)\) \(e\left(\frac{503}{812}\right)\) \(e\left(\frac{241}{406}\right)\) \(e\left(\frac{23}{28}\right)\) \(e\left(\frac{124}{203}\right)\)