Properties

Label 2523.211
Modulus $2523$
Conductor $841$
Order $812$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2523, base_ring=CyclotomicField(812)) M = H._module chi = DirichletCharacter(H, M([0,535]))
 
Copy content pari:[g,chi] = znchar(Mod(211,2523))
 

Basic properties

Modulus: \(2523\)
Conductor: \(841\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(812\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{841}(211,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2523.w

\(\chi_{2523}(10,\cdot)\) \(\chi_{2523}(19,\cdot)\) \(\chi_{2523}(31,\cdot)\) \(\chi_{2523}(37,\cdot)\) \(\chi_{2523}(40,\cdot)\) \(\chi_{2523}(43,\cdot)\) \(\chi_{2523}(55,\cdot)\) \(\chi_{2523}(61,\cdot)\) \(\chi_{2523}(73,\cdot)\) \(\chi_{2523}(76,\cdot)\) \(\chi_{2523}(79,\cdot)\) \(\chi_{2523}(85,\cdot)\) \(\chi_{2523}(97,\cdot)\) \(\chi_{2523}(106,\cdot)\) \(\chi_{2523}(118,\cdot)\) \(\chi_{2523}(124,\cdot)\) \(\chi_{2523}(127,\cdot)\) \(\chi_{2523}(130,\cdot)\) \(\chi_{2523}(142,\cdot)\) \(\chi_{2523}(148,\cdot)\) \(\chi_{2523}(160,\cdot)\) \(\chi_{2523}(163,\cdot)\) \(\chi_{2523}(166,\cdot)\) \(\chi_{2523}(172,\cdot)\) \(\chi_{2523}(184,\cdot)\) \(\chi_{2523}(193,\cdot)\) \(\chi_{2523}(205,\cdot)\) \(\chi_{2523}(211,\cdot)\) \(\chi_{2523}(214,\cdot)\) \(\chi_{2523}(217,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{812})$
Fixed field: Number field defined by a degree 812 polynomial (not computed)

Values on generators

\((842,1684)\) → \((1,e\left(\frac{535}{812}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 2523 }(211, a) \) \(-1\)\(1\)\(e\left(\frac{535}{812}\right)\)\(e\left(\frac{129}{406}\right)\)\(e\left(\frac{397}{406}\right)\)\(e\left(\frac{149}{203}\right)\)\(e\left(\frac{793}{812}\right)\)\(e\left(\frac{517}{812}\right)\)\(e\left(\frac{299}{812}\right)\)\(e\left(\frac{69}{406}\right)\)\(e\left(\frac{11}{28}\right)\)\(e\left(\frac{129}{203}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2523 }(211,a) \;\) at \(\;a = \) e.g. 2