# Properties

 Label 252.83 Modulus $252$ Conductor $252$ Order $6$ Real no Primitive yes Minimal yes Parity odd

# Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(252, base_ring=CyclotomicField(6))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([3,1,3]))

pari: [g,chi] = znchar(Mod(83,252))

## Basic properties

 Modulus: $$252$$ Conductor: $$252$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$6$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 252.s

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: 6.0.432081216.1

## Values on generators

$$(127,29,73)$$ → $$(-1,e\left(\frac{1}{6}\right),-1)$$

## Values

 $$-1$$ $$1$$ $$5$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$37$$ $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$
sage: chi.jacobi_sum(n)

$$\chi_{ 252 }(83,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 252 }(83,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 252 }(83,·),\chi_{ 252 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 252 }(83,·)) \;$$ at $$\; a,b =$$ e.g. 1,2