Properties

Modulus $252$
Structure \(C_{6}\times C_{6}\times C_{2}\)
Order $72$

Learn more

Show commands: Pari/GP / SageMath

sage: H = DirichletGroup(252)
 
pari: g = idealstar(,252,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 72
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{6}\times C_{6}\times C_{2}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{252}(127,\cdot)$, $\chi_{252}(29,\cdot)$, $\chi_{252}(73,\cdot)$

First 32 of 72 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\)
\(\chi_{252}(1,\cdot)\) 252.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{252}(5,\cdot)\) 252.w 6 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(11,\cdot)\) 252.bb 6 yes \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{252}(13,\cdot)\) 252.bc 6 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)
\(\chi_{252}(17,\cdot)\) 252.t 6 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{252}(19,\cdot)\) 252.bf 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(23,\cdot)\) 252.bb 6 yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(25,\cdot)\) 252.i 3 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{252}(29,\cdot)\) 252.bg 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)
\(\chi_{252}(31,\cdot)\) 252.n 6 yes \(1\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{252}(37,\cdot)\) 252.k 3 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(41,\cdot)\) 252.x 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)
\(\chi_{252}(43,\cdot)\) 252.v 6 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)
\(\chi_{252}(47,\cdot)\) 252.bn 6 yes \(-1\) \(1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(53,\cdot)\) 252.bk 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{252}(55,\cdot)\) 252.b 2 no \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{252}(59,\cdot)\) 252.bn 6 yes \(-1\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{252}(61,\cdot)\) 252.p 6 no \(-1\) \(1\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(65,\cdot)\) 252.m 6 no \(-1\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(67,\cdot)\) 252.bl 6 yes \(-1\) \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{252}(71,\cdot)\) 252.e 2 no \(1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\)
\(\chi_{252}(73,\cdot)\) 252.z 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{252}(79,\cdot)\) 252.bl 6 yes \(-1\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(83,\cdot)\) 252.s 6 yes \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)
\(\chi_{252}(85,\cdot)\) 252.j 3 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)
\(\chi_{252}(89,\cdot)\) 252.t 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(95,\cdot)\) 252.o 6 yes \(1\) \(1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{252}(97,\cdot)\) 252.bc 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)
\(\chi_{252}(101,\cdot)\) 252.w 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{252}(103,\cdot)\) 252.bj 6 yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(107,\cdot)\) 252.be 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{252}(109,\cdot)\) 252.k 3 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)