sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2480, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,5,15,12]))
pari:[g,chi] = znchar(Mod(283,2480))
| Modulus: | \(2480\) | |
| Conductor: | \(2480\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(20\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2480}(283,\cdot)\)
\(\chi_{2480}(467,\cdot)\)
\(\chi_{2480}(1027,\cdot)\)
\(\chi_{2480}(1163,\cdot)\)
\(\chi_{2480}(1403,\cdot)\)
\(\chi_{2480}(1907,\cdot)\)
\(\chi_{2480}(2147,\cdot)\)
\(\chi_{2480}(2203,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1551,1861,497,561)\) → \((-1,i,-i,e\left(\frac{3}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 2480 }(283, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) |
sage:chi.jacobi_sum(n)