Properties

Label 2480.467
Modulus $2480$
Conductor $2480$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2480, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([10,15,5,16]))
 
Copy content pari:[g,chi] = znchar(Mod(467,2480))
 

Basic properties

Modulus: \(2480\)
Conductor: \(2480\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2480.eo

\(\chi_{2480}(283,\cdot)\) \(\chi_{2480}(467,\cdot)\) \(\chi_{2480}(1027,\cdot)\) \(\chi_{2480}(1163,\cdot)\) \(\chi_{2480}(1403,\cdot)\) \(\chi_{2480}(1907,\cdot)\) \(\chi_{2480}(2147,\cdot)\) \(\chi_{2480}(2203,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((1551,1861,497,561)\) → \((-1,-i,i,e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 2480 }(467, a) \) \(1\)\(1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{9}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2480 }(467,a) \;\) at \(\;a = \) e.g. 2