sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2480, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,15,5,16]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(467,2480))
         
     
    
  
   | Modulus: |  \(2480\) |   |  
   | Conductor: |  \(2480\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(20\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  even |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{2480}(283,\cdot)\)
  \(\chi_{2480}(467,\cdot)\)
  \(\chi_{2480}(1027,\cdot)\)
  \(\chi_{2480}(1163,\cdot)\)
  \(\chi_{2480}(1403,\cdot)\)
  \(\chi_{2480}(1907,\cdot)\)
  \(\chi_{2480}(2147,\cdot)\)
  \(\chi_{2480}(2203,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1551,1861,497,561)\) → \((-1,-i,i,e\left(\frac{4}{5}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |       
    
    
      | \( \chi_{ 2480 }(467, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)