Properties

Label 24648.8315
Modulus $24648$
Conductor $24648$
Order $156$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24648, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([78,78,78,39,140]))
 
Copy content pari:[g,chi] = znchar(Mod(8315,24648))
 

Basic properties

Modulus: \(24648\)
Conductor: \(24648\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 24648.qg

\(\chi_{24648}(83,\cdot)\) \(\chi_{24648}(203,\cdot)\) \(\chi_{24648}(1763,\cdot)\) \(\chi_{24648}(2579,\cdot)\) \(\chi_{24648}(2699,\cdot)\) \(\chi_{24648}(3011,\cdot)\) \(\chi_{24648}(3323,\cdot)\) \(\chi_{24648}(3947,\cdot)\) \(\chi_{24648}(4139,\cdot)\) \(\chi_{24648}(4259,\cdot)\) \(\chi_{24648}(5075,\cdot)\) \(\chi_{24648}(5699,\cdot)\) \(\chi_{24648}(6443,\cdot)\) \(\chi_{24648}(6755,\cdot)\) \(\chi_{24648}(7067,\cdot)\) \(\chi_{24648}(7379,\cdot)\) \(\chi_{24648}(8315,\cdot)\) \(\chi_{24648}(8627,\cdot)\) \(\chi_{24648}(8819,\cdot)\) \(\chi_{24648}(9443,\cdot)\) \(\chi_{24648}(9563,\cdot)\) \(\chi_{24648}(10691,\cdot)\) \(\chi_{24648}(12059,\cdot)\) \(\chi_{24648}(12563,\cdot)\) \(\chi_{24648}(13187,\cdot)\) \(\chi_{24648}(13619,\cdot)\) \(\chi_{24648}(14555,\cdot)\) \(\chi_{24648}(15059,\cdot)\) \(\chi_{24648}(15179,\cdot)\) \(\chi_{24648}(15371,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((18487,12325,16433,11377,12169)\) → \((-1,-1,-1,i,e\left(\frac{35}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 24648 }(8315, a) \) \(-1\)\(1\)\(e\left(\frac{139}{156}\right)\)\(e\left(\frac{127}{156}\right)\)\(e\left(\frac{43}{156}\right)\)\(e\left(\frac{11}{13}\right)\)\(e\left(\frac{151}{156}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{61}{78}\right)\)\(e\left(\frac{34}{39}\right)\)\(e\left(\frac{1}{156}\right)\)\(e\left(\frac{55}{78}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 24648 }(8315,a) \;\) at \(\;a = \) e.g. 2