sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(24648, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([78,78,78,117,16]))
pari:[g,chi] = znchar(Mod(83,24648))
| Modulus: | \(24648\) | |
| Conductor: | \(24648\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{24648}(83,\cdot)\)
\(\chi_{24648}(203,\cdot)\)
\(\chi_{24648}(1763,\cdot)\)
\(\chi_{24648}(2579,\cdot)\)
\(\chi_{24648}(2699,\cdot)\)
\(\chi_{24648}(3011,\cdot)\)
\(\chi_{24648}(3323,\cdot)\)
\(\chi_{24648}(3947,\cdot)\)
\(\chi_{24648}(4139,\cdot)\)
\(\chi_{24648}(4259,\cdot)\)
\(\chi_{24648}(5075,\cdot)\)
\(\chi_{24648}(5699,\cdot)\)
\(\chi_{24648}(6443,\cdot)\)
\(\chi_{24648}(6755,\cdot)\)
\(\chi_{24648}(7067,\cdot)\)
\(\chi_{24648}(7379,\cdot)\)
\(\chi_{24648}(8315,\cdot)\)
\(\chi_{24648}(8627,\cdot)\)
\(\chi_{24648}(8819,\cdot)\)
\(\chi_{24648}(9443,\cdot)\)
\(\chi_{24648}(9563,\cdot)\)
\(\chi_{24648}(10691,\cdot)\)
\(\chi_{24648}(12059,\cdot)\)
\(\chi_{24648}(12563,\cdot)\)
\(\chi_{24648}(13187,\cdot)\)
\(\chi_{24648}(13619,\cdot)\)
\(\chi_{24648}(14555,\cdot)\)
\(\chi_{24648}(15059,\cdot)\)
\(\chi_{24648}(15179,\cdot)\)
\(\chi_{24648}(15371,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((18487,12325,16433,11377,12169)\) → \((-1,-1,-1,-i,e\left(\frac{4}{39}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 24648 }(83, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{17}{156}\right)\) | \(e\left(\frac{29}{156}\right)\) | \(e\left(\frac{113}{156}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{5}{156}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{155}{156}\right)\) | \(e\left(\frac{23}{78}\right)\) |
sage:chi.jacobi_sum(n)