sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(245, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,20]))
pari:[g,chi] = znchar(Mod(114,245))
Modulus: | \(245\) | |
Conductor: | \(245\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{245}(4,\cdot)\)
\(\chi_{245}(9,\cdot)\)
\(\chi_{245}(39,\cdot)\)
\(\chi_{245}(44,\cdot)\)
\(\chi_{245}(74,\cdot)\)
\(\chi_{245}(109,\cdot)\)
\(\chi_{245}(114,\cdot)\)
\(\chi_{245}(144,\cdot)\)
\(\chi_{245}(149,\cdot)\)
\(\chi_{245}(179,\cdot)\)
\(\chi_{245}(184,\cdot)\)
\(\chi_{245}(219,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((197,101)\) → \((-1,e\left(\frac{10}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\( \chi_{ 245 }(114, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{11}{21}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)