![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2432, base_ring=CyclotomicField(288))
M = H._module
chi = DirichletCharacter(H, M([144,63,224]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2432, base_ring=CyclotomicField(288))
M = H._module
chi = DirichletCharacter(H, M([144,63,224]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(595,2432))
        pari:[g,chi] = znchar(Mod(595,2432))
         
     
    
  
   | Modulus: | \(2432\) |  | 
   | Conductor: | \(2432\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(288\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | odd | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{2432}(35,\cdot)\)
  \(\chi_{2432}(43,\cdot)\)
  \(\chi_{2432}(99,\cdot)\)
  \(\chi_{2432}(123,\cdot)\)
  \(\chi_{2432}(131,\cdot)\)
  \(\chi_{2432}(139,\cdot)\)
  \(\chi_{2432}(187,\cdot)\)
  \(\chi_{2432}(195,\cdot)\)
  \(\chi_{2432}(251,\cdot)\)
  \(\chi_{2432}(275,\cdot)\)
  \(\chi_{2432}(283,\cdot)\)
  \(\chi_{2432}(291,\cdot)\)
  \(\chi_{2432}(339,\cdot)\)
  \(\chi_{2432}(347,\cdot)\)
  \(\chi_{2432}(403,\cdot)\)
  \(\chi_{2432}(427,\cdot)\)
  \(\chi_{2432}(435,\cdot)\)
  \(\chi_{2432}(443,\cdot)\)
  \(\chi_{2432}(491,\cdot)\)
  \(\chi_{2432}(499,\cdot)\)
  \(\chi_{2432}(555,\cdot)\)
  \(\chi_{2432}(579,\cdot)\)
  \(\chi_{2432}(587,\cdot)\)
  \(\chi_{2432}(595,\cdot)\)
  \(\chi_{2432}(643,\cdot)\)
  \(\chi_{2432}(651,\cdot)\)
  \(\chi_{2432}(707,\cdot)\)
  \(\chi_{2432}(731,\cdot)\)
  \(\chi_{2432}(739,\cdot)\)
  \(\chi_{2432}(747,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1407,2053,1921)\) → \((-1,e\left(\frac{7}{32}\right),e\left(\frac{7}{9}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) | 
    
    
      | \( \chi_{ 2432 }(595, a) \) | \(-1\) | \(1\) | \(e\left(\frac{77}{288}\right)\) | \(e\left(\frac{191}{288}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{77}{144}\right)\) | \(e\left(\frac{41}{96}\right)\) | \(e\left(\frac{49}{288}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{179}{288}\right)\) | \(e\left(\frac{17}{144}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)