sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2432, base_ring=CyclotomicField(288))
M = H._module
chi = DirichletCharacter(H, M([144,117,224]))
pari:[g,chi] = znchar(Mod(747,2432))
Modulus: | \(2432\) | |
Conductor: | \(2432\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(288\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2432}(35,\cdot)\)
\(\chi_{2432}(43,\cdot)\)
\(\chi_{2432}(99,\cdot)\)
\(\chi_{2432}(123,\cdot)\)
\(\chi_{2432}(131,\cdot)\)
\(\chi_{2432}(139,\cdot)\)
\(\chi_{2432}(187,\cdot)\)
\(\chi_{2432}(195,\cdot)\)
\(\chi_{2432}(251,\cdot)\)
\(\chi_{2432}(275,\cdot)\)
\(\chi_{2432}(283,\cdot)\)
\(\chi_{2432}(291,\cdot)\)
\(\chi_{2432}(339,\cdot)\)
\(\chi_{2432}(347,\cdot)\)
\(\chi_{2432}(403,\cdot)\)
\(\chi_{2432}(427,\cdot)\)
\(\chi_{2432}(435,\cdot)\)
\(\chi_{2432}(443,\cdot)\)
\(\chi_{2432}(491,\cdot)\)
\(\chi_{2432}(499,\cdot)\)
\(\chi_{2432}(555,\cdot)\)
\(\chi_{2432}(579,\cdot)\)
\(\chi_{2432}(587,\cdot)\)
\(\chi_{2432}(595,\cdot)\)
\(\chi_{2432}(643,\cdot)\)
\(\chi_{2432}(651,\cdot)\)
\(\chi_{2432}(707,\cdot)\)
\(\chi_{2432}(731,\cdot)\)
\(\chi_{2432}(739,\cdot)\)
\(\chi_{2432}(747,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1407,2053,1921)\) → \((-1,e\left(\frac{13}{32}\right),e\left(\frac{7}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 2432 }(747, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{239}{288}\right)\) | \(e\left(\frac{245}{288}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{95}{144}\right)\) | \(e\left(\frac{35}{96}\right)\) | \(e\left(\frac{283}{288}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{17}{288}\right)\) | \(e\left(\frac{107}{144}\right)\) |
sage:chi.jacobi_sum(n)