Properties

Label 2432.cq
Modulus $2432$
Conductor $2432$
Order $288$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2432, base_ring=CyclotomicField(288)) M = H._module chi = DirichletCharacter(H, M([0,135,80])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(13,2432)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2432\)
Conductor: \(2432\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(288\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{288})$
Fixed field: Number field defined by a degree 288 polynomial (not computed)

First 31 of 96 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(21\) \(23\)
\(\chi_{2432}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{288}\right)\) \(e\left(\frac{263}{288}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{5}{144}\right)\) \(e\left(\frac{17}{96}\right)\) \(e\left(\frac{121}{288}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{107}{288}\right)\) \(e\left(\frac{17}{144}\right)\)
\(\chi_{2432}(21,\cdot)\) \(-1\) \(1\) \(e\left(\frac{271}{288}\right)\) \(e\left(\frac{85}{288}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{127}{144}\right)\) \(e\left(\frac{19}{96}\right)\) \(e\left(\frac{107}{288}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{97}{288}\right)\) \(e\left(\frac{115}{144}\right)\)
\(\chi_{2432}(29,\cdot)\) \(-1\) \(1\) \(e\left(\frac{233}{288}\right)\) \(e\left(\frac{275}{288}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{89}{144}\right)\) \(e\left(\frac{5}{96}\right)\) \(e\left(\frac{109}{288}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{263}{288}\right)\) \(e\left(\frac{101}{144}\right)\)
\(\chi_{2432}(53,\cdot)\) \(-1\) \(1\) \(e\left(\frac{119}{288}\right)\) \(e\left(\frac{269}{288}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{119}{144}\right)\) \(e\left(\frac{59}{96}\right)\) \(e\left(\frac{115}{288}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{185}{288}\right)\) \(e\left(\frac{59}{144}\right)\)
\(\chi_{2432}(109,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{288}\right)\) \(e\left(\frac{271}{288}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{61}{144}\right)\) \(e\left(\frac{73}{96}\right)\) \(e\left(\frac{209}{288}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{211}{288}\right)\) \(e\left(\frac{121}{144}\right)\)
\(\chi_{2432}(117,\cdot)\) \(-1\) \(1\) \(e\left(\frac{103}{288}\right)\) \(e\left(\frac{61}{288}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{103}{144}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{131}{288}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{73}{288}\right)\) \(e\left(\frac{91}{144}\right)\)
\(\chi_{2432}(165,\cdot)\) \(-1\) \(1\) \(e\left(\frac{275}{288}\right)\) \(e\left(\frac{65}{288}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{131}{144}\right)\) \(e\left(\frac{71}{96}\right)\) \(e\left(\frac{31}{288}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{125}{288}\right)\) \(e\left(\frac{71}{144}\right)\)
\(\chi_{2432}(173,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{288}\right)\) \(e\left(\frac{31}{288}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{109}{144}\right)\) \(e\left(\frac{25}{96}\right)\) \(e\left(\frac{161}{288}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{259}{288}\right)\) \(e\left(\frac{25}{144}\right)\)
\(\chi_{2432}(181,\cdot)\) \(-1\) \(1\) \(e\left(\frac{215}{288}\right)\) \(e\left(\frac{77}{288}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{71}{144}\right)\) \(e\left(\frac{59}{96}\right)\) \(e\left(\frac{19}{288}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{281}{288}\right)\) \(e\left(\frac{11}{144}\right)\)
\(\chi_{2432}(205,\cdot)\) \(-1\) \(1\) \(e\left(\frac{245}{288}\right)\) \(e\left(\frac{215}{288}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{101}{144}\right)\) \(e\left(\frac{65}{96}\right)\) \(e\left(\frac{169}{288}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{59}{288}\right)\) \(e\left(\frac{113}{144}\right)\)
\(\chi_{2432}(261,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{288}\right)\) \(e\left(\frac{73}{288}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{43}{144}\right)\) \(e\left(\frac{31}{96}\right)\) \(e\left(\frac{119}{288}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{229}{288}\right)\) \(e\left(\frac{31}{144}\right)\)
\(\chi_{2432}(269,\cdot)\) \(-1\) \(1\) \(e\left(\frac{229}{288}\right)\) \(e\left(\frac{7}{288}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{85}{144}\right)\) \(e\left(\frac{49}{96}\right)\) \(e\left(\frac{185}{288}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{235}{288}\right)\) \(e\left(\frac{1}{144}\right)\)
\(\chi_{2432}(317,\cdot)\) \(-1\) \(1\) \(e\left(\frac{113}{288}\right)\) \(e\left(\frac{11}{288}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{113}{144}\right)\) \(e\left(\frac{77}{96}\right)\) \(e\left(\frac{85}{288}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{287}{288}\right)\) \(e\left(\frac{125}{144}\right)\)
\(\chi_{2432}(325,\cdot)\) \(-1\) \(1\) \(e\left(\frac{91}{288}\right)\) \(e\left(\frac{121}{288}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{91}{144}\right)\) \(e\left(\frac{79}{96}\right)\) \(e\left(\frac{71}{288}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{277}{288}\right)\) \(e\left(\frac{79}{144}\right)\)
\(\chi_{2432}(333,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{288}\right)\) \(e\left(\frac{23}{288}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{53}{144}\right)\) \(e\left(\frac{65}{96}\right)\) \(e\left(\frac{73}{288}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{155}{288}\right)\) \(e\left(\frac{65}{144}\right)\)
\(\chi_{2432}(357,\cdot)\) \(-1\) \(1\) \(e\left(\frac{227}{288}\right)\) \(e\left(\frac{17}{288}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{23}{96}\right)\) \(e\left(\frac{79}{288}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{77}{288}\right)\) \(e\left(\frac{23}{144}\right)\)
\(\chi_{2432}(413,\cdot)\) \(-1\) \(1\) \(e\left(\frac{169}{288}\right)\) \(e\left(\frac{19}{288}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{25}{144}\right)\) \(e\left(\frac{37}{96}\right)\) \(e\left(\frac{173}{288}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{103}{288}\right)\) \(e\left(\frac{85}{144}\right)\)
\(\chi_{2432}(421,\cdot)\) \(-1\) \(1\) \(e\left(\frac{211}{288}\right)\) \(e\left(\frac{97}{288}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{67}{144}\right)\) \(e\left(\frac{7}{96}\right)\) \(e\left(\frac{95}{288}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{253}{288}\right)\) \(e\left(\frac{55}{144}\right)\)
\(\chi_{2432}(469,\cdot)\) \(-1\) \(1\) \(e\left(\frac{95}{288}\right)\) \(e\left(\frac{101}{288}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{95}{144}\right)\) \(e\left(\frac{35}{96}\right)\) \(e\left(\frac{283}{288}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{17}{288}\right)\) \(e\left(\frac{35}{144}\right)\)
\(\chi_{2432}(477,\cdot)\) \(-1\) \(1\) \(e\left(\frac{217}{288}\right)\) \(e\left(\frac{67}{288}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{73}{144}\right)\) \(e\left(\frac{85}{96}\right)\) \(e\left(\frac{125}{288}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{151}{288}\right)\) \(e\left(\frac{133}{144}\right)\)
\(\chi_{2432}(485,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{288}\right)\) \(e\left(\frac{113}{288}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{35}{144}\right)\) \(e\left(\frac{23}{96}\right)\) \(e\left(\frac{271}{288}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{173}{288}\right)\) \(e\left(\frac{119}{144}\right)\)
\(\chi_{2432}(509,\cdot)\) \(-1\) \(1\) \(e\left(\frac{65}{288}\right)\) \(e\left(\frac{251}{288}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{65}{144}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{133}{288}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{239}{288}\right)\) \(e\left(\frac{77}{144}\right)\)
\(\chi_{2432}(565,\cdot)\) \(-1\) \(1\) \(e\left(\frac{151}{288}\right)\) \(e\left(\frac{109}{288}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{7}{144}\right)\) \(e\left(\frac{91}{96}\right)\) \(e\left(\frac{83}{288}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{121}{288}\right)\) \(e\left(\frac{139}{144}\right)\)
\(\chi_{2432}(573,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{288}\right)\) \(e\left(\frac{43}{288}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{13}{96}\right)\) \(e\left(\frac{149}{288}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{127}{288}\right)\) \(e\left(\frac{109}{144}\right)\)
\(\chi_{2432}(621,\cdot)\) \(-1\) \(1\) \(e\left(\frac{221}{288}\right)\) \(e\left(\frac{47}{288}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{77}{144}\right)\) \(e\left(\frac{41}{96}\right)\) \(e\left(\frac{49}{288}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{179}{288}\right)\) \(e\left(\frac{89}{144}\right)\)
\(\chi_{2432}(629,\cdot)\) \(-1\) \(1\) \(e\left(\frac{199}{288}\right)\) \(e\left(\frac{157}{288}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{55}{144}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{35}{288}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{169}{288}\right)\) \(e\left(\frac{43}{144}\right)\)
\(\chi_{2432}(637,\cdot)\) \(-1\) \(1\) \(e\left(\frac{161}{288}\right)\) \(e\left(\frac{59}{288}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{17}{144}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{37}{288}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{47}{288}\right)\) \(e\left(\frac{29}{144}\right)\)
\(\chi_{2432}(661,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{288}\right)\) \(e\left(\frac{53}{288}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{47}{144}\right)\) \(e\left(\frac{83}{96}\right)\) \(e\left(\frac{43}{288}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{257}{288}\right)\) \(e\left(\frac{131}{144}\right)\)
\(\chi_{2432}(717,\cdot)\) \(-1\) \(1\) \(e\left(\frac{277}{288}\right)\) \(e\left(\frac{55}{288}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{133}{144}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{137}{288}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{283}{288}\right)\) \(e\left(\frac{49}{144}\right)\)
\(\chi_{2432}(725,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{288}\right)\) \(e\left(\frac{133}{288}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{31}{144}\right)\) \(e\left(\frac{67}{96}\right)\) \(e\left(\frac{59}{288}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{145}{288}\right)\) \(e\left(\frac{19}{144}\right)\)
\(\chi_{2432}(773,\cdot)\) \(-1\) \(1\) \(e\left(\frac{203}{288}\right)\) \(e\left(\frac{137}{288}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{59}{144}\right)\) \(e\left(\frac{95}{96}\right)\) \(e\left(\frac{247}{288}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{197}{288}\right)\) \(e\left(\frac{143}{144}\right)\)