Properties

Label 2432.109
Modulus $2432$
Conductor $2432$
Order $288$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2432, base_ring=CyclotomicField(288)) M = H._module chi = DirichletCharacter(H, M([0,207,112]))
 
Copy content pari:[g,chi] = znchar(Mod(109,2432))
 

Basic properties

Modulus: \(2432\)
Conductor: \(2432\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(288\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2432.cq

\(\chi_{2432}(13,\cdot)\) \(\chi_{2432}(21,\cdot)\) \(\chi_{2432}(29,\cdot)\) \(\chi_{2432}(53,\cdot)\) \(\chi_{2432}(109,\cdot)\) \(\chi_{2432}(117,\cdot)\) \(\chi_{2432}(165,\cdot)\) \(\chi_{2432}(173,\cdot)\) \(\chi_{2432}(181,\cdot)\) \(\chi_{2432}(205,\cdot)\) \(\chi_{2432}(261,\cdot)\) \(\chi_{2432}(269,\cdot)\) \(\chi_{2432}(317,\cdot)\) \(\chi_{2432}(325,\cdot)\) \(\chi_{2432}(333,\cdot)\) \(\chi_{2432}(357,\cdot)\) \(\chi_{2432}(413,\cdot)\) \(\chi_{2432}(421,\cdot)\) \(\chi_{2432}(469,\cdot)\) \(\chi_{2432}(477,\cdot)\) \(\chi_{2432}(485,\cdot)\) \(\chi_{2432}(509,\cdot)\) \(\chi_{2432}(565,\cdot)\) \(\chi_{2432}(573,\cdot)\) \(\chi_{2432}(621,\cdot)\) \(\chi_{2432}(629,\cdot)\) \(\chi_{2432}(637,\cdot)\) \(\chi_{2432}(661,\cdot)\) \(\chi_{2432}(717,\cdot)\) \(\chi_{2432}(725,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{288})$
Fixed field: Number field defined by a degree 288 polynomial (not computed)

Values on generators

\((1407,2053,1921)\) → \((1,e\left(\frac{23}{32}\right),e\left(\frac{7}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 2432 }(109, a) \) \(-1\)\(1\)\(e\left(\frac{61}{288}\right)\)\(e\left(\frac{271}{288}\right)\)\(e\left(\frac{25}{48}\right)\)\(e\left(\frac{61}{144}\right)\)\(e\left(\frac{73}{96}\right)\)\(e\left(\frac{209}{288}\right)\)\(e\left(\frac{11}{72}\right)\)\(e\left(\frac{1}{72}\right)\)\(e\left(\frac{211}{288}\right)\)\(e\left(\frac{121}{144}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2432 }(109,a) \;\) at \(\;a = \) e.g. 2