sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2432, base_ring=CyclotomicField(144))
M = H._module
chi = DirichletCharacter(H, M([0,27,64]))
pari:[g,chi] = znchar(Mod(9,2432))
\(\chi_{2432}(9,\cdot)\)
\(\chi_{2432}(25,\cdot)\)
\(\chi_{2432}(73,\cdot)\)
\(\chi_{2432}(137,\cdot)\)
\(\chi_{2432}(169,\cdot)\)
\(\chi_{2432}(233,\cdot)\)
\(\chi_{2432}(313,\cdot)\)
\(\chi_{2432}(329,\cdot)\)
\(\chi_{2432}(377,\cdot)\)
\(\chi_{2432}(441,\cdot)\)
\(\chi_{2432}(473,\cdot)\)
\(\chi_{2432}(537,\cdot)\)
\(\chi_{2432}(617,\cdot)\)
\(\chi_{2432}(633,\cdot)\)
\(\chi_{2432}(681,\cdot)\)
\(\chi_{2432}(745,\cdot)\)
\(\chi_{2432}(777,\cdot)\)
\(\chi_{2432}(841,\cdot)\)
\(\chi_{2432}(921,\cdot)\)
\(\chi_{2432}(937,\cdot)\)
\(\chi_{2432}(985,\cdot)\)
\(\chi_{2432}(1049,\cdot)\)
\(\chi_{2432}(1081,\cdot)\)
\(\chi_{2432}(1145,\cdot)\)
\(\chi_{2432}(1225,\cdot)\)
\(\chi_{2432}(1241,\cdot)\)
\(\chi_{2432}(1289,\cdot)\)
\(\chi_{2432}(1353,\cdot)\)
\(\chi_{2432}(1385,\cdot)\)
\(\chi_{2432}(1449,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1407,2053,1921)\) → \((1,e\left(\frac{3}{16}\right),e\left(\frac{4}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 2432 }(9, a) \) |
\(1\) | \(1\) | \(e\left(\frac{49}{144}\right)\) | \(e\left(\frac{43}{144}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{5}{144}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{127}{144}\right)\) | \(e\left(\frac{37}{72}\right)\) |
sage:chi.jacobi_sum(n)