Properties

Label 2432.537
Modulus $2432$
Conductor $1216$
Order $144$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2432, base_ring=CyclotomicField(144)) M = H._module chi = DirichletCharacter(H, M([0,9,128]))
 
Copy content pari:[g,chi] = znchar(Mod(537,2432))
 

Basic properties

Modulus: \(2432\)
Conductor: \(1216\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(144\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1216}(5,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2432.co

\(\chi_{2432}(9,\cdot)\) \(\chi_{2432}(25,\cdot)\) \(\chi_{2432}(73,\cdot)\) \(\chi_{2432}(137,\cdot)\) \(\chi_{2432}(169,\cdot)\) \(\chi_{2432}(233,\cdot)\) \(\chi_{2432}(313,\cdot)\) \(\chi_{2432}(329,\cdot)\) \(\chi_{2432}(377,\cdot)\) \(\chi_{2432}(441,\cdot)\) \(\chi_{2432}(473,\cdot)\) \(\chi_{2432}(537,\cdot)\) \(\chi_{2432}(617,\cdot)\) \(\chi_{2432}(633,\cdot)\) \(\chi_{2432}(681,\cdot)\) \(\chi_{2432}(745,\cdot)\) \(\chi_{2432}(777,\cdot)\) \(\chi_{2432}(841,\cdot)\) \(\chi_{2432}(921,\cdot)\) \(\chi_{2432}(937,\cdot)\) \(\chi_{2432}(985,\cdot)\) \(\chi_{2432}(1049,\cdot)\) \(\chi_{2432}(1081,\cdot)\) \(\chi_{2432}(1145,\cdot)\) \(\chi_{2432}(1225,\cdot)\) \(\chi_{2432}(1241,\cdot)\) \(\chi_{2432}(1289,\cdot)\) \(\chi_{2432}(1353,\cdot)\) \(\chi_{2432}(1385,\cdot)\) \(\chi_{2432}(1449,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{144})$
Fixed field: Number field defined by a degree 144 polynomial (not computed)

Values on generators

\((1407,2053,1921)\) → \((1,e\left(\frac{1}{16}\right),e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 2432 }(537, a) \) \(1\)\(1\)\(e\left(\frac{107}{144}\right)\)\(e\left(\frac{41}{144}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{35}{72}\right)\)\(e\left(\frac{47}{48}\right)\)\(e\left(\frac{55}{144}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{101}{144}\right)\)\(e\left(\frac{47}{72}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2432 }(537,a) \;\) at \(\;a = \) e.g. 2