Properties

Label 24200.gu
Modulus $24200$
Conductor $605$
Order $22$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(24200, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([0,0,11,10])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(1849,24200)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(24200\)
Conductor: \(605\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 605.o
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{24200}(1849,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{15}{22}\right)\) \(1\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(-1\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{24200}(4049,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{3}{22}\right)\) \(1\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(-1\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{24200}(6249,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{13}{22}\right)\) \(1\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(-1\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{24200}(8449,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{22}\right)\) \(1\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(-1\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{24200}(12849,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{21}{22}\right)\) \(1\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(-1\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{24200}(15049,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{9}{22}\right)\) \(1\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(-1\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{24200}(17249,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{19}{22}\right)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(-1\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{24200}(19449,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(-1\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{24200}(21649,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{17}{22}\right)\) \(1\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(-1\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{24200}(23849,\cdot)\) \(1\) \(1\) \(-1\) \(e\left(\frac{5}{22}\right)\) \(1\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(-1\) \(e\left(\frac{10}{11}\right)\)