Properties

Label 605.o
Modulus $605$
Conductor $605$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(22))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,10]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(34,605))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(605\)
Conductor: \(605\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(12\) \(13\) \(14\)
\(\chi_{605}(34,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{22}\right)\) \(-1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(1\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{605}(89,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{22}\right)\) \(-1\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(1\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{605}(144,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{22}\right)\) \(-1\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(1\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{605}(199,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{22}\right)\) \(-1\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(1\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{605}(254,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{22}\right)\) \(-1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(1\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{605}(309,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{22}\right)\) \(-1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(1\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{605}(419,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{22}\right)\) \(-1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(1\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{605}(474,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{22}\right)\) \(-1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(1\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{605}(529,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{22}\right)\) \(-1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(1\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{605}(584,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{22}\right)\) \(-1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(1\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{10}{11}\right)\)