sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2415, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([22,33,22,26]))
pari:[g,chi] = znchar(Mod(2183,2415))
Modulus: | \(2415\) | |
Conductor: | \(2415\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(44\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2415}(83,\cdot)\)
\(\chi_{2415}(272,\cdot)\)
\(\chi_{2415}(293,\cdot)\)
\(\chi_{2415}(398,\cdot)\)
\(\chi_{2415}(503,\cdot)\)
\(\chi_{2415}(608,\cdot)\)
\(\chi_{2415}(797,\cdot)\)
\(\chi_{2415}(902,\cdot)\)
\(\chi_{2415}(1217,\cdot)\)
\(\chi_{2415}(1238,\cdot)\)
\(\chi_{2415}(1322,\cdot)\)
\(\chi_{2415}(1532,\cdot)\)
\(\chi_{2415}(1742,\cdot)\)
\(\chi_{2415}(1763,\cdot)\)
\(\chi_{2415}(1847,\cdot)\)
\(\chi_{2415}(1868,\cdot)\)
\(\chi_{2415}(1952,\cdot)\)
\(\chi_{2415}(2057,\cdot)\)
\(\chi_{2415}(2183,\cdot)\)
\(\chi_{2415}(2288,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((806,967,346,1891)\) → \((-1,-i,-1,e\left(\frac{13}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(26\) |
\( \chi_{ 2415 }(2183, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{1}{44}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(i\) | \(e\left(\frac{5}{11}\right)\) |
sage:chi.jacobi_sum(n)