L(s) = 1 | + (−0.909 + 0.415i)2-s + (0.654 − 0.755i)4-s + (−0.281 + 0.959i)8-s + (0.415 − 0.909i)11-s + (0.989 + 0.142i)13-s + (−0.142 − 0.989i)16-s + (0.755 − 0.654i)17-s + (0.654 − 0.755i)19-s + i·22-s + (−0.959 + 0.281i)26-s + (−0.654 − 0.755i)29-s + (0.959 + 0.281i)31-s + (0.540 + 0.841i)32-s + (−0.415 + 0.909i)34-s + (0.540 + 0.841i)37-s + (−0.281 + 0.959i)38-s + ⋯ |
L(s) = 1 | + (−0.909 + 0.415i)2-s + (0.654 − 0.755i)4-s + (−0.281 + 0.959i)8-s + (0.415 − 0.909i)11-s + (0.989 + 0.142i)13-s + (−0.142 − 0.989i)16-s + (0.755 − 0.654i)17-s + (0.654 − 0.755i)19-s + i·22-s + (−0.959 + 0.281i)26-s + (−0.654 − 0.755i)29-s + (0.959 + 0.281i)31-s + (0.540 + 0.841i)32-s + (−0.415 + 0.909i)34-s + (0.540 + 0.841i)37-s + (−0.281 + 0.959i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2415 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.888 - 0.458i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2415 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.888 - 0.458i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.230312002 - 0.2986785178i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.230312002 - 0.2986785178i\) |
\(L(1)\) |
\(\approx\) |
\(0.8486059764 + 0.001761907162i\) |
\(L(1)\) |
\(\approx\) |
\(0.8486059764 + 0.001761907162i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (-0.909 + 0.415i)T \) |
| 11 | \( 1 + (0.415 - 0.909i)T \) |
| 13 | \( 1 + (0.989 + 0.142i)T \) |
| 17 | \( 1 + (0.755 - 0.654i)T \) |
| 19 | \( 1 + (0.654 - 0.755i)T \) |
| 29 | \( 1 + (-0.654 - 0.755i)T \) |
| 31 | \( 1 + (0.959 + 0.281i)T \) |
| 37 | \( 1 + (0.540 + 0.841i)T \) |
| 41 | \( 1 + (0.841 + 0.540i)T \) |
| 43 | \( 1 + (0.281 + 0.959i)T \) |
| 47 | \( 1 - iT \) |
| 53 | \( 1 + (0.989 - 0.142i)T \) |
| 59 | \( 1 + (0.142 - 0.989i)T \) |
| 61 | \( 1 + (-0.959 - 0.281i)T \) |
| 67 | \( 1 + (-0.909 + 0.415i)T \) |
| 71 | \( 1 + (-0.415 - 0.909i)T \) |
| 73 | \( 1 + (0.755 + 0.654i)T \) |
| 79 | \( 1 + (-0.142 + 0.989i)T \) |
| 83 | \( 1 + (-0.540 - 0.841i)T \) |
| 89 | \( 1 + (-0.959 + 0.281i)T \) |
| 97 | \( 1 + (0.540 - 0.841i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.56337085804470282480984756835, −18.8117717676791638077318416225, −18.19064547490547036289022163563, −17.58756909542132604608449091476, −16.81331380947447406890451596973, −16.22475013438095560592015138684, −15.44239135439547098530403389508, −14.700448427720392078690174901113, −13.78406027832914662742282121801, −12.799136846364022497733789816509, −12.26858889343897351703084003014, −11.57700166365510646531619986593, −10.67135098839156878771756260693, −10.17841574276995365121286121922, −9.31685751125195393055579419059, −8.74727707479564342703678358065, −7.76285100911535665152397960058, −7.35064930626697875744418624775, −6.28024961314274072185287737248, −5.62644584375132591670360045953, −4.20460158651380983723519845314, −3.648762796383611786996237954218, −2.672246389022918626910328774063, −1.647896756676870181870788783721, −1.03295394634791138681782556326,
0.72120524583602054968998791520, 1.35094816850712041712829138957, 2.63159067718355031090972843433, 3.36828784978290319639345799342, 4.57614849405718162155416343987, 5.58891876949126722309109068000, 6.176680921105509715219687335292, 6.9330455133746247847325571735, 7.8307340748058591739579482749, 8.42370317703883528593861049379, 9.23344041301764875942418496913, 9.77659481500498628225586445996, 10.71601347733736962293281261944, 11.48289982608896203697999631547, 11.79491960340036307950237771886, 13.20870883114169238486112529743, 13.84963728797971518441022423442, 14.52059624439127614367014396395, 15.45735538820224585717382398873, 16.01149778230000058257243152063, 16.6574347667854551480617877596, 17.24712650184993636898916946296, 18.32641510204410378655092458852, 18.45317815832684479924783989800, 19.43729794627071461116058074107