sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2415, base_ring=CyclotomicField(132))
M = H._module
chi = DirichletCharacter(H, M([66,33,22,102]))
pari:[g,chi] = znchar(Mod(1487,2415))
Modulus: | \(2415\) | |
Conductor: | \(2415\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(132\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2415}(17,\cdot)\)
\(\chi_{2415}(38,\cdot)\)
\(\chi_{2415}(122,\cdot)\)
\(\chi_{2415}(143,\cdot)\)
\(\chi_{2415}(152,\cdot)\)
\(\chi_{2415}(227,\cdot)\)
\(\chi_{2415}(332,\cdot)\)
\(\chi_{2415}(362,\cdot)\)
\(\chi_{2415}(383,\cdot)\)
\(\chi_{2415}(458,\cdot)\)
\(\chi_{2415}(467,\cdot)\)
\(\chi_{2415}(488,\cdot)\)
\(\chi_{2415}(563,\cdot)\)
\(\chi_{2415}(572,\cdot)\)
\(\chi_{2415}(677,\cdot)\)
\(\chi_{2415}(773,\cdot)\)
\(\chi_{2415}(803,\cdot)\)
\(\chi_{2415}(908,\cdot)\)
\(\chi_{2415}(962,\cdot)\)
\(\chi_{2415}(983,\cdot)\)
\(\chi_{2415}(1088,\cdot)\)
\(\chi_{2415}(1118,\cdot)\)
\(\chi_{2415}(1193,\cdot)\)
\(\chi_{2415}(1298,\cdot)\)
\(\chi_{2415}(1307,\cdot)\)
\(\chi_{2415}(1328,\cdot)\)
\(\chi_{2415}(1433,\cdot)\)
\(\chi_{2415}(1487,\cdot)\)
\(\chi_{2415}(1538,\cdot)\)
\(\chi_{2415}(1592,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((806,967,346,1891)\) → \((-1,i,e\left(\frac{1}{6}\right),e\left(\frac{17}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(26\) |
\( \chi_{ 2415 }(1487, a) \) |
\(1\) | \(1\) | \(e\left(\frac{83}{132}\right)\) | \(e\left(\frac{17}{66}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{4}{33}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{17}{33}\right)\) | \(e\left(\frac{43}{132}\right)\) | \(e\left(\frac{61}{66}\right)\) | \(-i\) | \(e\left(\frac{23}{33}\right)\) |
sage:chi.jacobi_sum(n)