L(s) = 1 | + (−0.690 − 0.723i)2-s + (−0.0475 + 0.998i)4-s + (0.755 − 0.654i)8-s + (0.723 + 0.690i)11-s + (0.909 + 0.415i)13-s + (−0.995 − 0.0950i)16-s + (−0.458 + 0.888i)17-s + (0.888 − 0.458i)19-s − i·22-s + (−0.327 − 0.945i)26-s + (0.841 − 0.540i)29-s + (0.327 − 0.945i)31-s + (0.618 + 0.786i)32-s + (0.959 − 0.281i)34-s + (0.371 − 0.928i)37-s + (−0.945 − 0.327i)38-s + ⋯ |
L(s) = 1 | + (−0.690 − 0.723i)2-s + (−0.0475 + 0.998i)4-s + (0.755 − 0.654i)8-s + (0.723 + 0.690i)11-s + (0.909 + 0.415i)13-s + (−0.995 − 0.0950i)16-s + (−0.458 + 0.888i)17-s + (0.888 − 0.458i)19-s − i·22-s + (−0.327 − 0.945i)26-s + (0.841 − 0.540i)29-s + (0.327 − 0.945i)31-s + (0.618 + 0.786i)32-s + (0.959 − 0.281i)34-s + (0.371 − 0.928i)37-s + (−0.945 − 0.327i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2415 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.888 - 0.458i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2415 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & (0.888 - 0.458i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.283695814 - 0.3112712410i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.283695814 - 0.3112712410i\) |
\(L(1)\) |
\(\approx\) |
\(0.8646136242 - 0.1860220677i\) |
\(L(1)\) |
\(\approx\) |
\(0.8646136242 - 0.1860220677i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
| 23 | \( 1 \) |
good | 2 | \( 1 + (-0.690 - 0.723i)T \) |
| 11 | \( 1 + (0.723 + 0.690i)T \) |
| 13 | \( 1 + (0.909 + 0.415i)T \) |
| 17 | \( 1 + (-0.458 + 0.888i)T \) |
| 19 | \( 1 + (0.888 - 0.458i)T \) |
| 29 | \( 1 + (0.841 - 0.540i)T \) |
| 31 | \( 1 + (0.327 - 0.945i)T \) |
| 37 | \( 1 + (0.371 - 0.928i)T \) |
| 41 | \( 1 + (-0.142 + 0.989i)T \) |
| 43 | \( 1 + (-0.755 - 0.654i)T \) |
| 47 | \( 1 + (-0.866 - 0.5i)T \) |
| 53 | \( 1 + (-0.814 - 0.580i)T \) |
| 59 | \( 1 + (0.995 - 0.0950i)T \) |
| 61 | \( 1 + (0.981 - 0.189i)T \) |
| 67 | \( 1 + (0.971 - 0.235i)T \) |
| 71 | \( 1 + (0.959 + 0.281i)T \) |
| 73 | \( 1 + (0.998 + 0.0475i)T \) |
| 79 | \( 1 + (0.580 + 0.814i)T \) |
| 83 | \( 1 + (0.989 - 0.142i)T \) |
| 89 | \( 1 + (-0.327 - 0.945i)T \) |
| 97 | \( 1 + (-0.989 - 0.142i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.4152191060945746453609691957, −18.759912162650988489813654176082, −18.0003394423290892719961993892, −17.61694566022544153753601309615, −16.54173180808209277546953836936, −16.14279305189103545132656839446, −15.53872296353616632717871756172, −14.61397059865018047528365598571, −13.89506462318245849415926153197, −13.501700342757579771467526369461, −12.25001598532910406023449289424, −11.38356099095626301445933172364, −10.83625922018460152324993949911, −9.9008163175768894059201101714, −9.27274970303515064234549201595, −8.440239318554113358923855019240, −8.01266031822796175259619239945, −6.8274442539149276825666759467, −6.48878965994279840248947954304, −5.501005980294368982347421179702, −4.86642723364664586038227366034, −3.704967089001818269692371462283, −2.8145574327811801975527670036, −1.45991637085076199689785420678, −0.83431394800543921247191279786,
0.81666640528835427536453328371, 1.714746764124804244103007292482, 2.45319821301997412137454406021, 3.62413077773779351722013454585, 4.08785188984030527579731550305, 5.07707788032461726785407574195, 6.43009855121785274283597001268, 6.85184889404053616819073714229, 8.00285595786947005838503113839, 8.47023454266849952896339375427, 9.480964758872919615199850256859, 9.79033910667713034780298048609, 10.85272130799322058772475501881, 11.44344560989301413896502363060, 12.02545705014605692732364841786, 12.93899956287789286793752749234, 13.48186373362377647923690530286, 14.37520109929927938581770276240, 15.34733937582179037763745437833, 16.04025869441101368625640048352, 16.827163891956795014320194157486, 17.506103805511330401211609593, 18.05517273671466650791507020067, 18.785947768427105048771628213059, 19.59517188796981893268811838376