Properties

Label 2415.1112
Modulus $2415$
Conductor $2415$
Order $44$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2415, base_ring=CyclotomicField(44)) M = H._module chi = DirichletCharacter(H, M([22,11,22,12]))
 
Copy content pari:[g,chi] = znchar(Mod(1112,2415))
 

Basic properties

Modulus: \(2415\)
Conductor: \(2415\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(44\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2415.cr

\(\chi_{2415}(62,\cdot)\) \(\chi_{2415}(167,\cdot)\) \(\chi_{2415}(188,\cdot)\) \(\chi_{2415}(377,\cdot)\) \(\chi_{2415}(587,\cdot)\) \(\chi_{2415}(692,\cdot)\) \(\chi_{2415}(818,\cdot)\) \(\chi_{2415}(923,\cdot)\) \(\chi_{2415}(1007,\cdot)\) \(\chi_{2415}(1028,\cdot)\) \(\chi_{2415}(1112,\cdot)\) \(\chi_{2415}(1133,\cdot)\) \(\chi_{2415}(1343,\cdot)\) \(\chi_{2415}(1553,\cdot)\) \(\chi_{2415}(1637,\cdot)\) \(\chi_{2415}(1658,\cdot)\) \(\chi_{2415}(1973,\cdot)\) \(\chi_{2415}(2078,\cdot)\) \(\chi_{2415}(2267,\cdot)\) \(\chi_{2415}(2372,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: Number field defined by a degree 44 polynomial

Values on generators

\((806,967,346,1891)\) → \((-1,i,-1,e\left(\frac{3}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(26\)
\( \chi_{ 2415 }(1112, a) \) \(-1\)\(1\)\(e\left(\frac{13}{44}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{39}{44}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{3}{44}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{7}{44}\right)\)\(e\left(\frac{1}{11}\right)\)\(i\)\(e\left(\frac{4}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2415 }(1112,a) \;\) at \(\;a = \) e.g. 2