sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2415, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([22,33,22,16]))
pari:[g,chi] = znchar(Mod(1028,2415))
| Modulus: | \(2415\) | |
| Conductor: | \(2415\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(44\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2415}(62,\cdot)\)
\(\chi_{2415}(167,\cdot)\)
\(\chi_{2415}(188,\cdot)\)
\(\chi_{2415}(377,\cdot)\)
\(\chi_{2415}(587,\cdot)\)
\(\chi_{2415}(692,\cdot)\)
\(\chi_{2415}(818,\cdot)\)
\(\chi_{2415}(923,\cdot)\)
\(\chi_{2415}(1007,\cdot)\)
\(\chi_{2415}(1028,\cdot)\)
\(\chi_{2415}(1112,\cdot)\)
\(\chi_{2415}(1133,\cdot)\)
\(\chi_{2415}(1343,\cdot)\)
\(\chi_{2415}(1553,\cdot)\)
\(\chi_{2415}(1637,\cdot)\)
\(\chi_{2415}(1658,\cdot)\)
\(\chi_{2415}(1973,\cdot)\)
\(\chi_{2415}(2078,\cdot)\)
\(\chi_{2415}(2267,\cdot)\)
\(\chi_{2415}(2372,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((806,967,346,1891)\) → \((-1,-i,-1,e\left(\frac{4}{11}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(26\) |
| \( \chi_{ 2415 }(1028, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{37}{44}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(-i\) | \(e\left(\frac{9}{11}\right)\) |
sage:chi.jacobi_sum(n)