Properties

Label 2349.1745
Modulus $2349$
Conductor $783$
Order $126$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([35,99]))
 
Copy content pari:[g,chi] = znchar(Mod(1745,2349))
 

Basic properties

Modulus: \(2349\)
Conductor: \(783\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{783}(5,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2349.bn

\(\chi_{2349}(35,\cdot)\) \(\chi_{2349}(62,\cdot)\) \(\chi_{2349}(71,\cdot)\) \(\chi_{2349}(125,\cdot)\) \(\chi_{2349}(179,\cdot)\) \(\chi_{2349}(332,\cdot)\) \(\chi_{2349}(341,\cdot)\) \(\chi_{2349}(386,\cdot)\) \(\chi_{2349}(440,\cdot)\) \(\chi_{2349}(557,\cdot)\) \(\chi_{2349}(584,\cdot)\) \(\chi_{2349}(602,\cdot)\) \(\chi_{2349}(818,\cdot)\) \(\chi_{2349}(845,\cdot)\) \(\chi_{2349}(854,\cdot)\) \(\chi_{2349}(908,\cdot)\) \(\chi_{2349}(962,\cdot)\) \(\chi_{2349}(1115,\cdot)\) \(\chi_{2349}(1124,\cdot)\) \(\chi_{2349}(1169,\cdot)\) \(\chi_{2349}(1223,\cdot)\) \(\chi_{2349}(1340,\cdot)\) \(\chi_{2349}(1367,\cdot)\) \(\chi_{2349}(1385,\cdot)\) \(\chi_{2349}(1601,\cdot)\) \(\chi_{2349}(1628,\cdot)\) \(\chi_{2349}(1637,\cdot)\) \(\chi_{2349}(1691,\cdot)\) \(\chi_{2349}(1745,\cdot)\) \(\chi_{2349}(1898,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((407,1945)\) → \((e\left(\frac{5}{18}\right),e\left(\frac{11}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 2349 }(1745, a) \) \(-1\)\(1\)\(e\left(\frac{4}{63}\right)\)\(e\left(\frac{8}{63}\right)\)\(e\left(\frac{85}{126}\right)\)\(e\left(\frac{55}{63}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{16}{63}\right)\)\(e\left(\frac{23}{63}\right)\)\(e\left(\frac{59}{63}\right)\)\(e\left(\frac{16}{63}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2349 }(1745,a) \;\) at \(\;a = \) e.g. 2