Properties

Label 2349.bn
Modulus $2349$
Conductor $783$
Order $126$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([91,27])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(35,2349)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2349\)
Conductor: \(783\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 783.bh
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{2349}(35,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{47}{63}\right)\)
\(\chi_{2349}(62,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{53}{63}\right)\)
\(\chi_{2349}(71,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{22}{63}\right)\)
\(\chi_{2349}(125,\cdot)\) \(-1\) \(1\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{34}{63}\right)\)
\(\chi_{2349}(179,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{37}{63}\right)\)
\(\chi_{2349}(332,\cdot)\) \(-1\) \(1\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{50}{63}\right)\)
\(\chi_{2349}(341,\cdot)\) \(-1\) \(1\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{10}{63}\right)\)
\(\chi_{2349}(386,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{62}{63}\right)\)
\(\chi_{2349}(440,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{2}{63}\right)\)
\(\chi_{2349}(557,\cdot)\) \(-1\) \(1\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{40}{63}\right)\)
\(\chi_{2349}(584,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{46}{63}\right)\)
\(\chi_{2349}(602,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{38}{63}\right)\)
\(\chi_{2349}(818,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{5}{63}\right)\)
\(\chi_{2349}(845,\cdot)\) \(-1\) \(1\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{11}{63}\right)\)
\(\chi_{2349}(854,\cdot)\) \(-1\) \(1\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{43}{63}\right)\)
\(\chi_{2349}(908,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{55}{63}\right)\)
\(\chi_{2349}(962,\cdot)\) \(-1\) \(1\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{58}{63}\right)\)
\(\chi_{2349}(1115,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{8}{63}\right)\)
\(\chi_{2349}(1124,\cdot)\) \(-1\) \(1\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{31}{63}\right)\)
\(\chi_{2349}(1169,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{20}{63}\right)\)
\(\chi_{2349}(1223,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{23}{63}\right)\)
\(\chi_{2349}(1340,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{61}{63}\right)\)
\(\chi_{2349}(1367,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{4}{63}\right)\)
\(\chi_{2349}(1385,\cdot)\) \(-1\) \(1\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{59}{63}\right)\)
\(\chi_{2349}(1601,\cdot)\) \(-1\) \(1\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{26}{63}\right)\)
\(\chi_{2349}(1628,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{32}{63}\right)\)
\(\chi_{2349}(1637,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{1}{63}\right)\)
\(\chi_{2349}(1691,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{13}{63}\right)\)
\(\chi_{2349}(1745,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{16}{63}\right)\)
\(\chi_{2349}(1898,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{29}{63}\right)\)
\(\chi_{2349}(1907,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{52}{63}\right)\)