Properties

Label 2349.bj
Modulus $2349$
Conductor $2349$
Order $108$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(108)) M = H._module chi = DirichletCharacter(H, M([80,27])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(70,2349)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2349\)
Conductor: \(2349\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(108\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{2349}(70,\cdot)\) \(-1\) \(1\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{91}{108}\right)\) \(e\left(\frac{26}{27}\right)\)
\(\chi_{2349}(133,\cdot)\) \(-1\) \(1\) \(e\left(\frac{101}{108}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{17}{108}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{20}{27}\right)\)
\(\chi_{2349}(157,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{108}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{19}{27}\right)\)
\(\chi_{2349}(220,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{108}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{77}{108}\right)\) \(e\left(\frac{22}{27}\right)\)
\(\chi_{2349}(331,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{5}{27}\right)\)
\(\chi_{2349}(394,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{26}{27}\right)\)
\(\chi_{2349}(418,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{108}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{19}{108}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{16}{27}\right)\)
\(\chi_{2349}(481,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{19}{27}\right)\)
\(\chi_{2349}(592,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{35}{108}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{11}{27}\right)\)
\(\chi_{2349}(655,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{108}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{5}{27}\right)\)
\(\chi_{2349}(679,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{13}{27}\right)\)
\(\chi_{2349}(742,\cdot)\) \(-1\) \(1\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{49}{54}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{29}{108}\right)\) \(e\left(\frac{16}{27}\right)\)
\(\chi_{2349}(853,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{108}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{19}{108}\right)\) \(e\left(\frac{17}{27}\right)\)
\(\chi_{2349}(916,\cdot)\) \(-1\) \(1\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{25}{108}\right)\) \(e\left(\frac{11}{27}\right)\)
\(\chi_{2349}(940,\cdot)\) \(-1\) \(1\) \(e\left(\frac{91}{108}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{35}{108}\right)\) \(e\left(\frac{10}{27}\right)\)
\(\chi_{2349}(1003,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{108}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{5}{108}\right)\) \(e\left(\frac{13}{27}\right)\)
\(\chi_{2349}(1114,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{108}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{23}{27}\right)\)
\(\chi_{2349}(1177,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{108}\right)\) \(e\left(\frac{17}{54}\right)\) \(e\left(\frac{47}{54}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{108}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{17}{27}\right)\)
\(\chi_{2349}(1201,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{91}{108}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{7}{27}\right)\)
\(\chi_{2349}(1264,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{37}{54}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{49}{108}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{10}{27}\right)\)
\(\chi_{2349}(1375,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{2}{27}\right)\)
\(\chi_{2349}(1438,\cdot)\) \(-1\) \(1\) \(e\left(\frac{77}{108}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{29}{108}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{13}{108}\right)\) \(e\left(\frac{23}{27}\right)\)
\(\chi_{2349}(1462,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{4}{27}\right)\)
\(\chi_{2349}(1525,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{7}{54}\right)\) \(e\left(\frac{13}{54}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{7}{27}\right)\)
\(\chi_{2349}(1636,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{108}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{23}{108}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{55}{108}\right)\) \(e\left(\frac{8}{27}\right)\)
\(\chi_{2349}(1699,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{108}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{23}{54}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{2}{27}\right)\)
\(\chi_{2349}(1723,\cdot)\) \(-1\) \(1\) \(e\left(\frac{55}{108}\right)\) \(e\left(\frac{1}{54}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{71}{108}\right)\) \(e\left(\frac{1}{27}\right)\)
\(\chi_{2349}(1786,\cdot)\) \(-1\) \(1\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{25}{108}\right)\) \(e\left(\frac{43}{54}\right)\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{4}{27}\right)\)
\(\chi_{2349}(1897,\cdot)\) \(-1\) \(1\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{41}{54}\right)\) \(e\left(\frac{53}{54}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{29}{54}\right)\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{14}{27}\right)\)
\(\chi_{2349}(1960,\cdot)\) \(-1\) \(1\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{35}{54}\right)\) \(e\left(\frac{11}{54}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{77}{108}\right)\) \(e\left(\frac{5}{54}\right)\) \(e\left(\frac{1}{108}\right)\) \(e\left(\frac{8}{27}\right)\)
\(\chi_{2349}(1984,\cdot)\) \(-1\) \(1\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{25}{54}\right)\) \(e\left(\frac{31}{54}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{55}{108}\right)\) \(e\left(\frac{19}{54}\right)\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{25}{27}\right)\)