sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2349, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([52,27]))
pari:[g,chi] = znchar(Mod(1984,2349))
Modulus: | \(2349\) | |
Conductor: | \(2349\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(108\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2349}(70,\cdot)\)
\(\chi_{2349}(133,\cdot)\)
\(\chi_{2349}(157,\cdot)\)
\(\chi_{2349}(220,\cdot)\)
\(\chi_{2349}(331,\cdot)\)
\(\chi_{2349}(394,\cdot)\)
\(\chi_{2349}(418,\cdot)\)
\(\chi_{2349}(481,\cdot)\)
\(\chi_{2349}(592,\cdot)\)
\(\chi_{2349}(655,\cdot)\)
\(\chi_{2349}(679,\cdot)\)
\(\chi_{2349}(742,\cdot)\)
\(\chi_{2349}(853,\cdot)\)
\(\chi_{2349}(916,\cdot)\)
\(\chi_{2349}(940,\cdot)\)
\(\chi_{2349}(1003,\cdot)\)
\(\chi_{2349}(1114,\cdot)\)
\(\chi_{2349}(1177,\cdot)\)
\(\chi_{2349}(1201,\cdot)\)
\(\chi_{2349}(1264,\cdot)\)
\(\chi_{2349}(1375,\cdot)\)
\(\chi_{2349}(1438,\cdot)\)
\(\chi_{2349}(1462,\cdot)\)
\(\chi_{2349}(1525,\cdot)\)
\(\chi_{2349}(1636,\cdot)\)
\(\chi_{2349}(1699,\cdot)\)
\(\chi_{2349}(1723,\cdot)\)
\(\chi_{2349}(1786,\cdot)\)
\(\chi_{2349}(1897,\cdot)\)
\(\chi_{2349}(1960,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((407,1945)\) → \((e\left(\frac{13}{27}\right),i)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 2349 }(1984, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{79}{108}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{19}{27}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{55}{108}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{47}{108}\right)\) | \(e\left(\frac{25}{27}\right)\) |
sage:chi.jacobi_sum(n)