Properties

Label 2349.748
Modulus $2349$
Conductor $783$
Order $63$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([112,90]))
 
Copy content pari:[g,chi] = znchar(Mod(748,2349))
 

Basic properties

Modulus: \(2349\)
Conductor: \(783\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(63\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{783}(574,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2349.bg

\(\chi_{2349}(181,\cdot)\) \(\chi_{2349}(199,\cdot)\) \(\chi_{2349}(226,\cdot)\) \(\chi_{2349}(343,\cdot)\) \(\chi_{2349}(397,\cdot)\) \(\chi_{2349}(442,\cdot)\) \(\chi_{2349}(451,\cdot)\) \(\chi_{2349}(604,\cdot)\) \(\chi_{2349}(658,\cdot)\) \(\chi_{2349}(712,\cdot)\) \(\chi_{2349}(721,\cdot)\) \(\chi_{2349}(748,\cdot)\) \(\chi_{2349}(964,\cdot)\) \(\chi_{2349}(982,\cdot)\) \(\chi_{2349}(1009,\cdot)\) \(\chi_{2349}(1126,\cdot)\) \(\chi_{2349}(1180,\cdot)\) \(\chi_{2349}(1225,\cdot)\) \(\chi_{2349}(1234,\cdot)\) \(\chi_{2349}(1387,\cdot)\) \(\chi_{2349}(1441,\cdot)\) \(\chi_{2349}(1495,\cdot)\) \(\chi_{2349}(1504,\cdot)\) \(\chi_{2349}(1531,\cdot)\) \(\chi_{2349}(1747,\cdot)\) \(\chi_{2349}(1765,\cdot)\) \(\chi_{2349}(1792,\cdot)\) \(\chi_{2349}(1909,\cdot)\) \(\chi_{2349}(1963,\cdot)\) \(\chi_{2349}(2008,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 63 polynomial

Values on generators

\((407,1945)\) → \((e\left(\frac{8}{9}\right),e\left(\frac{5}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 2349 }(748, a) \) \(1\)\(1\)\(e\left(\frac{38}{63}\right)\)\(e\left(\frac{13}{63}\right)\)\(e\left(\frac{10}{63}\right)\)\(e\left(\frac{50}{63}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{26}{63}\right)\)\(e\left(\frac{61}{63}\right)\)\(e\left(\frac{25}{63}\right)\)\(e\left(\frac{26}{63}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2349 }(748,a) \;\) at \(\;a = \) e.g. 2