Properties

Label 2349.bg
Modulus $2349$
Conductor $783$
Order $63$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2349, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([112,54])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(181,2349)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2349\)
Conductor: \(783\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(63\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 783.bc
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 63 polynomial

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{2349}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{17}{63}\right)\)
\(\chi_{2349}(199,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{25}{63}\right)\)
\(\chi_{2349}(226,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{19}{63}\right)\)
\(\chi_{2349}(343,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{44}{63}\right)\)
\(\chi_{2349}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{41}{63}\right)\)
\(\chi_{2349}(442,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{52}{63}\right)\)
\(\chi_{2349}(451,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{29}{63}\right)\)
\(\chi_{2349}(604,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{16}{63}\right)\)
\(\chi_{2349}(658,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{13}{63}\right)\)
\(\chi_{2349}(712,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{1}{63}\right)\)
\(\chi_{2349}(721,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{32}{63}\right)\)
\(\chi_{2349}(748,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{26}{63}\right)\)
\(\chi_{2349}(964,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{59}{63}\right)\)
\(\chi_{2349}(982,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{4}{63}\right)\)
\(\chi_{2349}(1009,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{61}{63}\right)\)
\(\chi_{2349}(1126,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{23}{63}\right)\)
\(\chi_{2349}(1180,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{20}{63}\right)\)
\(\chi_{2349}(1225,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{31}{63}\right)\)
\(\chi_{2349}(1234,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{8}{63}\right)\)
\(\chi_{2349}(1387,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{58}{63}\right)\)
\(\chi_{2349}(1441,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{55}{63}\right)\)
\(\chi_{2349}(1495,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{43}{63}\right)\)
\(\chi_{2349}(1504,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{11}{63}\right)\)
\(\chi_{2349}(1531,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{5}{63}\right)\)
\(\chi_{2349}(1747,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{38}{63}\right)\)
\(\chi_{2349}(1765,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{46}{63}\right)\)
\(\chi_{2349}(1792,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{40}{63}\right)\)
\(\chi_{2349}(1909,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{2}{63}\right)\)
\(\chi_{2349}(1963,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{62}{63}\right)\)
\(\chi_{2349}(2008,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{10}{63}\right)\)
\(\chi_{2349}(2017,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{50}{63}\right)\)